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ABSTRACT

The mathematical modeling and performance analysis of cellular networks have seen
a major paradigm shift with the application of stochastic geometry. The main purpose
of stochastic geometry is to endow probability distributions on the locations of the base
stations (BSs) and users in a network, which, in turn, provides an analytical handle on
the performance evaluation of cellular networks. To preserve the tractability of analysis, the
common practice is to assume complete spatial randomness of the network topology. In other
words, the locations of users and BSs are modeled as independent homogeneous Poisson point
processes (PPPs). Despite its usefulness, the PPP-based network models fail to capture any
spatial coupling between the users and BSs which is dominant in a multi-tier cellular network
(also known as the heterogeneous cellular networks (HetNets)) consisting of macro and small
cells. For instance, the users tend to form hotspots or clusters at certain locations and the
small cell BSs (SBSs) are deployed at higher densities at these locations of the hotspots in
order to cater to the high data demand. Such user-centric deployments naturally couple the
locations of the users and SBSs. On the other hand, these spatial couplings are at the heart
of the spatial models used in industry for the system-level simulations and standardization
purposes. This dissertation proposes fundamentally new spatial models based on stochastic
geometry which closely emulate these spatial couplings and are conductive for a more realistic
and fine-tuned performance analysis, optimization, and design of cellular networks.

The first contribution of this dissertation is a new class of spatial models for HetNets
where the locations of the BSs and users are assumed to be distributed as Poisson cluster
process (PCP). From the modeling perspective, the proposed models can capture different
spatial couplings in a network topology such as the user hotspots and user BS coupling
occurring due to the user-centric deployment of the SBSs. The PCP-based model is a gener-
alization of the state-of-the-art PPP-based HetNet model. This is because the model reduces
to the PPP-based model once all spatial couplings in the network are ignored. From the
stochastic geometry perspective, we have made contributions in deriving the fundamental
distributional properties of PCP, such as the distance distributions and sum-product func-
tionals, which are instrumental for the performance characterization of the HetNets, such as
coverage and rate.

The focus on more refined spatial models for small cells and users brings to the second
direction of the dissertation, which is modeling and analysis of HetNets with millimeter wave
(mm-wave) integrated access and backhaul (IAB), an emerging design concept of the fifth
generation (5G) cellular networks. While the concepts of network densification with small
cells have emerged in the fourth generation (4G) era, the small cells can be realistically
deployed with IAB since it avoids the need for providing high capacity wired backhaul
to each SBS by replacing the last-mile fibers with mm-wave links. We have proposed new
stochastic geometry-based models for the performance analysis of IAB-enabled HetNets. Our



analysis reveals some interesting system-design insights: (1) the IAB HetNets can support a
maximum number of users beyond which the data rate drops below the rate of a single-tier
macro-only network, and (2) there exists a saturation point of SBS density beyond which no
rate gain is observed with the addition of more SBSs.

The third and final direction of this dissertation is the combination of machine learning
and stochastic geometry to construct a new class of data driven network models which can
be used in the performance optimization and design of a network. As a concrete example,
we investigate the classical problem of wireless link scheduling where the objective is to
choose an optimal subset of simultaneously active transmitters (Tx-s) from a ground set of
Tx-s which will maximize the network-wide sum-rate. Since the optimization problem is
NP-hard, we replace the computationally expensive heuristic by inferring the point patterns
of the active Tx-s in the optimal subset after training a determinantal point process (DPP).
Our investigations demonstrate that the DPP is able to learn the spatial interactions of the
Tx-s in the optimal subset and gives a reasonably accurate estimate of the optimal subset
for any new ground set of Tx-s.
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GENERAL AUDIENCE ABSTRACT

The high speed global cellular communication network is one of the most important tech-
nologies, and it continues to evolve rapidly with every new generation. This evolution greatly
depends on observing performance-trends of the emerging technologies on the network mod-
els through extensive system-level simulations. Since these simulation models are extremely
time-consuming and error prone, the complementary analytical models of cellular networks
have been an area of active research for a long time. These analytical models are intended
to provide crisp insights on the network behavior such as the dependence of network per-
formance metrics (such as coverage or rate) on key system-level parameters (such as trans-
mission powers, base station (BS) density) which serve as the prior knowledge for more
fine-tuned simulations. Over the last decade, the analytical modeling of the cellular net-
works has been driven by stochastic geometry. The main purpose of stochastic geometry is
to endow the locations of the base stations (BSs) and users with probability distributions
and then leverage the properties of these distributions to average out the spatial random-
ness. This process of spatial averaging allows us to derive the analytical expressions of the
system-level performance metrics despite the presence of a large number of random variables
(such as BS and user locations, channel gains) under some reasonable assumptions.

The simplest stochastic geometry based model of cellular networks, which is also the
most tractable, is the so-called Poisson point process (PPP) based network model. In this
model, users and BSs are assumed to be distributed as independent homogeneous PPPs.
This is equivalent to saying that the users and BSs independently and uniformly at random
over a plane. The PPP-based model turned out to be a reasonably accurate representation
of the yesteryear’s cellular networks which consisted of a single tier of macro BSs (MBSs)
intended to provide a uniform coverage blanket over the region. However, as the data-hungry
devices like smart-phones, tablets, and application like online gaming continue to flood the
consumer market, the network configuration is rapidly deviating from this baseline setup with
different spatial interactions between BSs and users (also termed spatial coupling) becoming
dominant. For instance, the user locations are far from being homogeneous as they are
concentrated in specific areas like residential and commercial zones (also known as hotspots).
Further, the network, previously consisting of a single tier of macro BSs (MBSs), is becoming
increasingly heterogeneous with the deployment of small cell BSs (SBSs) with small coverage
footprints and targeted to serve the user hotspots. It is not difficult to see that the network
topology with these spatial couplings is quite far from complete spatial randomness which is
the basis of the PPP-based models. The key contribution of this dissertation is to enrich the
stochastic geometry-based mathematical models so that they can capture the fine-grained
spatial couplings between the BSs and users. More specifically, this dissertation contributes
in the following three research directions.



Direction-I: Modeling Spatial Clustering. We model the locations of users and SBSs
forming hotspots as Poisson cluster processes (PCPs). A PCP is a collection of offspring
points which are located around the parent points which belong to a PPP. The coupling
between the locations of users and SBSs (due to their user-centric deployment) can be
introduced by assuming that the user and SBS PCPs share the same parent PPP. The key
contribution in this direction is the construction of a general HetNet model with a mixture
of PPP and PCP-distributed BSs and user distributions. Note that the baseline PPP-based
HetNet model appears as one of the many configurations supported by this general model.
For this general model, we derive the analytical expressions of the performance metrics like
coverage probability, BS load, and rate as functions of the coupling parameters (e.g. BS and
user cluster size).

Direction-II: Modeling Coupling in Wireless Backhaul Networks. While the de-
ployment of SBSs clearly enhances the network performance in terms of coverage, one might
wonder: how long network densification with tens of thousands of SBSs can meet the ever-
increasing data demand? It turns out that in the current network setting, where the backhaul
links (i.e. the links between the BSs and core network) are still wired, it is not feasible to
densify the network beyond some limit. This backhaul bottleneck can be overcome if the
backhaul links also become wireless and the backhaul and access links (link between user
and BS) are jointly managed by an integrated access and backhaul (IAB) network. In this
direction, we develop the analytical models of IAB-enabled HetNets where the key challenge
is to tackle new types of couplings which exist between the rates on the wireless access and
backhaul links. Such couplings exist due to the spatial correlation of the signal qualities of
the two links and the number of users served by different BSs. Two fundamental insights
obtained from this work are as follows: (1) the IAB HetNets can support a maximum number
of users beyond which the network performance drops below that of a single-tier macro-only
network, and (2) there exists a saturation point of SBS density beyond which no performance
gain is observed with the addition of more SBSs.

Direction-III: Modeling Repulsion. In this direction, we focus on modeling another
aspect of spatial coupling imposed by the intra-point repulsion. Consider a device-to-device
(D2D) communication scenario, where some users are transmitting some on-demand content
locally cached in their devices using a common channel. Any reasonable multiple access
scheme will ensure that two nearly users are never simultaneously active as they will cause
severe mutual interference and thereby reducing the network-wide sum rate. Thus the active
users in the network will have some spatial repulsion. The locations of these users can be
modeled as determinantal point processes (DPPs). The key property of DPP is that it forms
a bridge between stochastic geometry and machine learning, two otherwise non-overlapping
paradigms for wireless network modeling and design. The main focus in this direction is to
explore the learning framework of DPP and bring together advantages of stochastic geometry
and machine learning to construct a new class of data-driven analytical network models.
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1

Introduction

All models are wrong, but some are useful.

– George Box

With the unprecedented increase in the demand of mobile data, wireless cellular net-
works are evolving at a rapid pace. What started as a small step of extending the tele-
phony to the mobile environment has transformed into a giant leap towards ushering global
connectivity–the access of information anytime, anywhere, and the rise of a multi-trillion
dollar industry. Today, cellular networks have become an integral part of the social infras-
tructure, that have mobilized our daily life and facilitated digital economy. We are at a very
exciting phase in the evolution of cellular networks, with the roll-out of the fifth generation
(5G) technologies and the initiation of research on the sixth generation (6G). Every year,
the mobile handsets (e.g. smart-phones, tablets) are getting major refresh and newer appli-
cations requiring mobile data (such as navigation, streaming, augmented and virtual reality
etc.) continue to flood the app-stores. These developments are setting new performance
standards for the existing cellular network to meet. In order to design efficient networks
that meet the service requirements, it is important to evaluate the system-level performance
of the networks under different operational scenarios. The common methodology to evaluate
the performance of a cellular network is extensive computer simulations. As one can expect,
network simulations with multiple base stations (BSs) and users can easily become compli-
cated with the increase in the complexity of the cellular networks. Hence it is important to
develop complimentary analytical methods which will reduce the burden of the simulations.

Over the last decade, stochastic geometry has emerged as a key component in the
mathematical modeling and analysis of cellular networks. The main purpose of stochastic
geometry is to endow probability distributions on the locations of the base stations (BSs) and
users in a network. In order to ensure the tractability of analysis, the BSs and users in the
network are commonly modeled as independent homogeneous Poisson point processes (PPPs)
which means that the users and BSs are placed independently and uniformly at random over
the plane. While this assumption of complete spatial independence might have been sufficient
for yesteryear’s cellular networks, the state-of-the-art spatial models are quickly becoming
outdated as the networks are becoming increasingly complex. A critical missing piece in
these models is the spatial coupling between the locations of the BS and users. For instance,
the user hotspots in a network and user-centric deployment of BSs are very common factors
to be considered in today’s network design and deployment. Clearly, the analytical models
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of cellular networks based on PPP are not equipped to handle these spatial couplings. On
the other hand, the simulation-driven models have been continuously updated, thanks to
the standardization efforts lead by the third generation partnership project (3GPP). In an
attempt to close the gap between the simulation-driven and analytical models of cellular
network, this dissertation develops fundamentally new stochastic geometry-based models for
a more realistic and fine-tuned performance analysis, optimization and design of cellular
networks. We will follow three different directions for the development of these models:
first, general spatial models incorporating user and BS clustering and user-BS coupling,
second, spatial models for the analysis of integrated access and backhaul (IAB) networks
which is an emerging network architecture in 5G, and third, a new class of machine learning
inspired stochastic geometry based models which can learn the spatial distribution of the
network from the actual locations of its nodes. In order to put the key contributions of this
dissertation in perspective, we provide some background on the existing modeling approaches
and the analytical methods.

1.1 Performance Characterization of Cellular Networks
An integral part of the development and standardization of the cellular networks is the

performance evaluation of the network under a given setting. The performance evaluation
methods of cellular networks can be broadly classified into two types. (1) Link-level evalua-
tion, where the performance of an individual link is evaluated, such as the variation of the bit
error rate with signal-to-interference-and-noise-ratio (SINR) for some modulation and coding
scheme, antenna setting, and channel conditions and (2) System-level evaluation, where the
entire network is taken into account and the performance of an arbitrarily selected user is
evaluated, such as, the cumulative distribution function of the SINR at the location of an
arbitrary user. The distribution of SINR (also known as the coverage of a network) is the
fundamental metric of interest in the system-level since many other performance metrics like
rate and area spectral efficiency can be derived from the SINR distribution. In the system
level, more attention is paid to the spatial layout of the network (such as the user and BS
locations) with many link-level details (e.g. the modulation and coding schemes, channel
estimation techniques etc.) being abstracted for the sake of simplicity. The performance
characterization in the link-level has traditionally been backed up by the analytical mod-
els providing accurate estimates of the performance metrics [4, 5]. On the other hand, the
system-level evaluations almost entirely rely on simulations because of the lack of analytical
tools that can handle realistic placements users and BSs in the network.

The basis of the simulation-driven models till date is the hexagonal macrocells on the
hexagonal lattice, which was originally proposed in MacDonald’s paper on the cellular con-
cept [6]. However, the propagation characteristics of wireless signals greatly reduces the
burden of simulating a large network to the “19-cell wraparound region” [7] around the cell
of interest. Here the term “wraparound” means that the boundaries of the simulation region
are assumed to be contiguous (see Fig. 1.1 for an illustration), so that any edge effects do
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1.1. Performance Characterization of Cellular Networks

Figure 1.1: 19-cell wraparound region used to simulate macrocellular network.

not affect the simulation.

As the networks are becoming more heterogeneous with different types of BSs like macro
and small cell BSs, system-level simulations are becoming more complicated. Moreover, with
increasing number of network parameters in play, the comparison between the simulations
performed by different entities is becoming next to impossible. In order to harmonize the sim-
ulations, the standardization bodies like 3GPP define detailed simulation scenarios including
the methods for BS and user placements. These simulation settings are available in pub-
licly available technical reports and standards1. Despite their popularity in standardization
activities, there are a few fundamental problems with the simulation-driven investigations.
The first problem is the number of total scenarios to evaluate via simulation with will yield
spatial averaging with reasonable accuracy is often very large. This may require several
person-weeks of effort to code, debug, and run the simulations before every standards meet-
ing. Second, even if the networks are simulated, the total set of all possible scenarios can
be quite large with the number of network parameters, for instance, antenna heights, cell
density, base station transmit power, user density etc. Hence the simulation-driven evalua-
tions are not the most effective means to obtain some useful insight or trend of the network
performance.

Analytical Models. The increasing complexity of the simulation models has inspired
a lot of work focusing on developing analytical models of cellular networks. The key objective
of these models is to enable the performance characterization by deriving easy-to-compute
mathematical expressions of the performance metrics without the need for running extensive
Monte Carlo simulations. As noted earlier, the hexagonal grid structure or in general any
of the regular placement of BSs is not amenable to mathematical analysis. Interestingly, if
the regular spatial models are perturbed with random displacement, the network model gains
1 The reader can visit https://www.3gpp.org/specifications to access the specification documents.
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significant analytical tractability by inheriting the properties of random spatial model [8,
Chapter 1],[9].

1.2 Stochastic Geometry-based Network Models
Stochastic geometry deals with the probability distributions related to the random spa-

tial models or random topology [10–13]. In a wireless network setting, the main theme of
the stochastic geometry-based model is to endow probability distributions on the locations
of transmitters and receivers in a network. In other words, the transmitter and receiver loca-
tions are assumed to be the realizations of point processes or random processes in Euclidean
space (such as R2). The point process based models of wireless nodes have been a standard
approach for the performance analysis of wireless ad hoc networks for a long time (see [14–17]
for a rich history of the random spatial modeling of wireless networks). In the context of
cellular networks, in [18, 19], Baccelli et al. used PPP as the spatial distribution of BSs for
the traffic and economic models of the networks. In [20], Andrews et al. characterized the
fundamental performance metrics like coverage and rate of a single tier cellular network with
PPP-distributed BSs. In [8,21], Dhillon et al. formulated a PPP-based analytical model for
a general multi-tier cellular network consisting of macro and small cell BSs (SBSs).

In a stochastic geometry based cellular network model, the BSs and user locations are
treated as realizations of some random point pattern, also known as a point processes. Then
the performance metrics of the network (such as the coverage and rate of an arbitrary user)
are evaluated as functionals2 of these point processes. The key role of stochastic geometry
is to transform these point process functionals (which are sum, product or the combination
of sum and product over the points) to easy-to-compute expressions which are often times
integrals over R2. The most common practice is to use the homogeneous PPP as the spatial
model for the BSs and users. This assumption is equivalent to saying that the users and BSs
are placed independently and uniformly at random over a plane. The PPP-based models have
gained significant popularity in cellular network modeling because of the following reasons.

Tractability. It is possible to obtain easy-to-compute expressions (which often times
reduces to closed forms) of the key performance metrics like the coverage and rate [20]. It
is also possible to generalize the network models to a K-tier HetNet model with different
types of BSs (such as macro, pico and femto cells) [8,21]. As a result, a wide set of network
deployment scenarios can be studied using this model [22–24].

Flexibility. These models are very flexible to be used for the performance evaluation
of different technologies, such as self-powered energy harvesting BSs [25], multiple input
multiple output (MIMO) enabled networks [26, 27], localization [28] and millimeter wave
(mm-wave) communication [29], and many more. The PPP-based modeling and analysis
of cellular networks is quite mature by now. We refer to [23, 30–32] for more pedagogical
treatment of the topic as well as extensive surveys of the prior art. Over the last decade
2 functionals are higher order functions which takes the usual functions as arguments.
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(a)
(b)

Figure 1.2: Illustration of the shortcoming of the PPP-based HetNet model: (a) relization
of a two-tier PPP-based HetNet. The macro BSs, SBSs, and users are indicated by squares,
black dots and red dots, respectively, (b) layout of an HetNet with user hotspots and user-
SBS coupling.

PPP has remained the foundation of the stochastic geometry based cellular network models.
However, as the performance analysis of the cellular networks are becoming more intertwined
with the complex topology of the network, the PPP-based models are becoming significantly
inaccurate. For instance, the PPP-based models are based on the assumption of complete
spatial independence of the points and hence cannot capture any kind of spatial coupling
between the network nodes (such as the BSs and users). See Fig 1.2 for an illustration. These
spatial couplings are quite central to some network deployments (such as the heterogeneous
cellular networks or HetNets) and hence can significantly impact the system-level evaluations.
After describing the shortcomings of the baseline PPP-based cellular network models, we are
now in a position to discuss three directions along which we will be developing new stochastic
geometry based models.

1.3 New Stochastic Geometry-based Network Models
Direction I: 3GPP-inspired HetNet Models (3GPP-HetNets). For the standard-
ization purposes, 3GPP has recommended different spatial configurations for the system-level
simulations of the cellular networks. These spatial configurations of users and BSs used in the
3GPP-compliant simulation models are fundamentally different from the PPP-based model.
In order to highlight this difference, we first provide a brief overview of the relevant spatial
setups used in the 3GPP simulation models.

For modeling macrocells, 3GPP simulation scenarios rely on either a single macrocell
setup or the hexagonal grid based models. On the contrary, as discussed next, several differ-
ent configurations corresponding to a variety of real-life deployment scenarios are considered
for modeling the locations of users and SBSs [1, Section A.2.1.1.2]. In order to be consistent
with the 3GPP documents, we will put keywords reserved for referring to the configurations
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(a) (b)

1
2

3

(c)

Figure 1.3: User and SBS configurations considered in 3GPP HetNet models. Figs. (a) and
(b) illustrate two different user configurations: (a) “uniform” within a macrocell, and (b)
“clustered” within a macrocell. Fig. (c) illustrates SBS configurations: (1) Dense deploy-
ment of SBSs at certain areas (usually within user hotspots or indoors), (2) SBSs deployed
uniformly at random within a macrocell, and (3) a single SBS deployed within a user hotspot.

of users (uniform and clustered) and SBSs (‘correlated’ and ‘uncorrelated’) in the 3GPP
documents in quotation marks.

Users. As illustrated in Figs. 1.3a and 1.3b, there are two main user configurations
considered in 3GPP simulation models: (i) ‘uniform’ and (ii) ‘clustered’. In the ‘uniform’
configuration, the users are assumed to be distributed uniformly at random within each
macrocell. Given the coverage-centric nature of macrocellular deployments, this configura-
tion has been the default choice for system-level simulations of cellular networks since their
inception. However, with the focus quickly shifting towards capacity-driven deployments of
SBSs, the ‘clustered’ user configuration has become at least as much (if not more) important.
In this configuration, the users are assumed to be distributed uniformly at random within
circular regions of a constant radius (modeling user hotspots). As discussed next, SBSs are
often deployed in these user hotspots, which couples their locations with those of the users.

SBSs. Roughly speaking, there are two different classes of configurations considered for
SBSs: (i) ‘uncorrelated’ and (ii) ‘correlated’. In the ‘uncorrelated’ configuration, the SBSs
are assumed to be distributed uniformly at random inside a macrocell. This corresponds
to configuration 2 in Fig. 1.3c. The complete description of ‘correlated’ configurations is
a bit more tedious due to their context-specific nature. Therefore, we will first summarize
the factors that introduce correlation or coupling in the SBS locations and then describe the
configurations that are most relevant to our work. Intra-tier coupling in the SBS locations is
introduced when SBSs are deployed according to some site-planning optimization strategies
to maximize coverage over the macrocell. Inter-tier coupling in the SBS and MBS locations
is introduced when more SBSs are deployed at the cell-edge to boost cell-edge coverage.
Similarly, SBS-user coupling results from the user-centric deployment of small cells in the
user hotspots. Interested readers are advised to refer to [1–3] for more details about how
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Figure 1.4: Illustration of a two tier mm-wave HetNet with IAB.

these sources of correlation manifest into the 3GPP simulation models. In this direction, we
will focus on the SBS-user coupling. Please refer to Fig. 1.3c (configurations 1 and 3) for
illustrative examples.

It is quite obvious by now that the simulation models discussed so far are quite different
than the PPP-based model for the multi-tier network, originally proposed in [21,22], where
the users and BSs of different tiers are distributed independently and uniformly at random
over a plane. For a concrete example, we illustrate a realization of a two-tier PPP-based
HetNet model in Fig. 1.2a.

Since the fundamental assumption in this PPP-based K-tier HetNet model is the mu-
tual independence of all the BS and user locations, it is not rich enough to model spatial
couplings which are extensively captured in the spatial configurations in the 3GPP-compliant
simulation settings (see Fig. 1.3c for example). In order to model intra-tier, inter-tier and
SBS-user couplings in HetNets, we need to consider spatial models beyond PPP. We defer a
more detailed discussion on these non-Poisson point processes and their applications in cellu-
lar network modeling to Section 3.1.2. While there are infinite ways of constructing random
spatial models of cellular networks (note that even the spatial configurations proposed by
3GPP can be interpreted as realizations of some point processes), the main challenge is to
guarantee the analytical tractability of these models for system-level performance evalua-
tions. A key contribution of this dissertation is to identify Poisson cluster process (PCP) as
a suitable candidate spatial model which offers a balance between the realistic modeling of
the spatial couplings and preserving the mathematical tractability of the models. Thus, in
the first part of this dissertation (Chapters 2-6), we develop a new class of stochastic geome-
try based HetNet models based on PCPs which encompass a wide set of the aforementioned
instances of spatial coupling.

Direction-II: Millimeter-wave Integrated access and Backhaul Network Models
(mm-wave IAB). While the development of the PCP-based HetNet models in Direction-I
(3GPP-HetNets) was intended to emphasize on the spatial couplings between the locations of
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the users and SBSs, we now move to another important aspect of the deployment of the SBSs.
It is well-known that the denser deployment of SBSs enables more aggressive frequency reuse.
However, the efforts towards network densification face a fundamental challenge because of
the structure of the current cellular networks, where the backhaul network (BN) connecting
the BSs to the network core is predominantly wired and hence is designed separately from
the radio access network (RAN). Hence, although the SBSs can be deployed ubiquitously,
it is not feasible to reach these tens of thousands of SBSs with wired backhaul connections.
This backhaul bottleneck (also known as the complexity of last-mile fiber) can potentially be
removed by adding wireless self-backhaling capabilities to the RAN. In this case, the wireless
BN will be integrated with the RAN and will share the same resources and infrastructure
which are used for the RAN. This will reduce the reliability on the fiber BN which will only
need to provide backhaul to a few BSs (called the anchored BSs (ABSs)) and the ABSs will
provide wireless backhaul to the other BSs in the network. See Fig. 1.4 for an illustration.
This IAB design is not feasible in the current networks operating in sub-6 GHz because of
the scarcity of bandwidth to be shared between the RANs and the BNs. This challenge can
be mitigated in mm-wave frequencies where it is possible to achieve fiber-like performance of
the backhaul links due to the large BW and beamforming gain using large antenna arrays.
While the IAB architecture can enable the ultra-densification of the network in 5G, it will
also introduce new design challenges which were not present in the traditional networks, such
as the resource management at the BSs between the RAN and BN. These type of questions
cannot be answered with the traditional stochastic geometry-based models of HetNets since
these models completely ignore the BN by assuming infinite capacity backhaul for all the
BSs in the network. Thus, the second direction (Chapters 7 and 8) of this dissertation is to
build generative models for the IAB-enabled HetNets.

Direction-III: Machine Learning-inspired stochastic geometry models (MLSG).
In the third direction of this dissertation (Chapter 9), our objective is to explore a com-
pletely new modeling technique of wireless networks by combining machine learning and
stochastic geometry, two powerful tools used in wireless network analysis and design. While
the stochastic geometry-based models are quite indispensable for the performance analysis
of the network, their role in the network optimization and design has been quite limited.
Unlike the traditional stochastic geometry-based analyses that assumes some distributions
of the random spatial model of the network (such as PPP or PCP with known parameters),
our objective is to learn the spatial distributions from the layouts of the actual networks
using a machine learning framework. The key enabling tool for this learning-based approach
is the determinantal point process (DPP), which lies at the intersection of machine learning
and stochastic geometry.

1.4 Contributions
The specific contributions in the three directions are highlighted next.
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New HetNet model considering user-centric small cell deployments. One of the
principal underlying assumptions of current approaches to the analysis of HetNets with ran-
dom spatial models is the uniform distribution of users independent of the BS locations.
This assumption is not quite accurate, especially for user-centric capacity-driven small cell
deployments where low-power BSs are deployed in the areas of high user density, thus induc-
ing a natural correlation in the BS and user locations. In order to capture this correlation,
in Chapter 2 we enrich the existing K-tier PPP-based HetNet model by considering user
locations as PCPs with the BSs at the cluster centers. We provide the formal analysis of
the downlink coverage probability in terms of a general density function describing the loca-
tions of users around the BSs. The derived results are specialized for two cases of interest:
1) Thomas cluster process (TCP) and 2) Matérn cluster process (MCP). Tight closed-form
bounds for the coverage probability in these two cases are also derived.

General HetNet models: Coverage analysis for max-SIR based association. While
Chapter 2 focused on modeling one particular instance of user BS coupling, there are many
other configurations of users and BSs that exhibit spatial coupling in the simulation models
of HetNets proposed by 3GPP. In Chapter 3, we unify all these configurations and construct
a more general HetNet model by modeling a fraction of users and arbitrary number of BS
tiers with PCP and PPP. We derive the downlink coverage probability of a typical user
under maximum SIR-based association. We further show that the proposed model converges
to the PPP-based HetNet model as the cluster size of the PCPs tends to infinity. Finally,
we specialize our analysis based on general PCPs for TCP and MCP.

General HetNet models: Coverage analysis for max-power based association. In
Chapter 4, we develop an analytical framework for the evaluation of the coverage probability,
or equivalently the CCDF of SINR, of a typical user in a K-tier HetNet under maximum
average received power-based association strategy, where the BS locations of each tier follow
either a PPP or a PCP. The key enabling step involves conditioning on the parent PPPs of all
the PCPs which allows us to express the coverage probability as a product of sum-products
and PGFLs of the parent PPPs. In addition to several useful insights, our analysis provides
a rigorous way for studying the impact of the cluster size on the SINR distribution, which
was not possible using existing PPP-based models.

Meta distribution of downlink SIR in the general HetNet Model. In the previous
chapters, we have constructed a general HetNet model with a combination of PPP and PCP
and presented the downlink coverage analysis . In Chapter 5, we focus on a more fine grained
analysis in terms of the meta distribution of SINR. In particular, we derive the distribution
of the conditional success probability of the typical user (probability that the received SINR

exceeds some threshold conditioned on the BS locations) averaged over small scale fading
assuming that the user connects to the BS providing the maximum received power.
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Load on the typical Poisson Voronoi cell with clustered user distribution. In
Chapter 6, we characterize the distribution of the number of users associating with the
typical base station (BS), termed the typical cell load, in a cellular network where the BSs
are distributed as a homogeneous PPP and the users are distributed as an independent
PCP. In this setting, we derive the exact expressions for the first two moments of the typical
cell load. Given the computational complexity of evaluating the higher moments, we derive
easy-to-use approximations for the probability generating function (PGF) of the typical cell
load, which can be inverted to obtain the probability mass function (PMF).

Bandwidth partitioning and downlink analysis in mm-wave IAB. In Chapter 7,
we develop an analytical framework for mm-wave cellular network with IAB using which
its downlink rate coverage probability is accurately characterized. Using this framework,
we study the performance of three backhaul bandwidth (BW) partition strategies: 1) equal
partition: when all SBSs obtain equal share of the backhaul BW; 2) instantaneous load-based
partition: when the backhaul BW share of an SBS is proportional to its instantaneous load;
and 3) average load-based partition: when the backhaul BW share of an SBS is proportional
to its average load. Our analysis shows that depending on the choice of the partitioning
strategy, there exists an optimal split of access and backhaul BW for which the rate coverage
is maximized. Further, there exists a critical volume of cell-load (total number of users)
beyond which the gains provided by the IAB-enabled network disappear and its performance
converges to that of the traditional macro-only network with no SBSs.

Load balancing in 5G HetNets with mm-wave IAB. While extending the PCP-
based HetNet models for mm-wave IAB networks, we found that it is not straightforward to
perform the rate analysis in the standard multi-cell setting analogous to the system models
considered in Chapters 2-5. In Chapter 8, we resort to the baseline PPP-based model and
develop an analytical framework for a two-tier HetNet with IAB. For this network, we derive
the downlink rate coverage probability for two types of resource allocations at the MBS: 1)
integrated resource allocation (IRA): where the total bandwidth is dynamically split between
access and backhaul, and 2) orthogonal resource allocation (ORA): where a static partition is
defined for the access and backhaul communications. Our analysis concretely demonstrates
that offloading users from the MBSs to SBSs may not provide similar rate improvements in
an IAB setting as it would in a HetNet with fiber-backhauled SBS. Our analysis also shows
that it is not possible to improve the user rate in an IAB setting by simply densifying the
SBSs due to the bottleneck on the rate of wireless backhaul links between MBS and SBS.

Determinantal subset selection for wireless networks. In wireless networks, many
problems can be formulated as subset selection problems where the goal is to select a sub-
set from the ground set with the objective of maximizing some objective function. These
problems are typically NP-hard and hence solved through carefully constructed heuristics,
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which are themselves mostly NP-complete and thus not easily applicable to large networks.
On the other hand, subset selection problems occur in slightly different context in machine
learning where the goal is to select a subset of high quality yet diverse items from a ground
set. This balance in quality and diversity is often maintained in the ML problems by using
DPP, which endows distributions on the subsets such that the probability of selecting two
similar items is negatively correlated. While DPPs have been explored more generally in
stochastic geometry to model inter-point repulsion, they are particularly conducive for ma-
chine learning applications because the parameters of their distributions can be efficiently
learnt from a training set. In Chapter 9, we introduce a novel DPP-based learning (DPPL)
framework for efficiently solving subset selection problems in wireless networks. The DPPL
is intended to replace the traditional optimization algorithms for subset selection by learning
the quality-diversity trade-off in the optimal subsets selected by an optimization routine. As
a case study, we apply DPPL to the wireless link scheduling problem, where the goal is
to determine the subset of simultaneously active links which maximizes the network-wide
sum-rate. We demonstrate that the proposed DPPL approaches the optimal solution with
significantly lower computational complexity than the popular optimization algorithms used
for this problem in the literature.
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below.
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2

Modeling and Analysis of K-tier
HetNet with Clustered User
Distribution

2.1 Introduction
The increasing popularity of Internet-enabled mobile devices, such as smartphones and

tablets, has led to an unprecendented increase in the global mobile data traffic, which has
in turn necessitated the need to dramatically increase the capacity of cellular networks. Not
surprisingly, a key enabler towards increasing network capacity at such a rate is to reuse
spectral resources over space and time more aggressively. This is already underway in the
form of capacity-driven deployment of several types of low-power BSs in the areas of high user
density, such as coffee shops, airport terminals, and downtowns of large cities [2, 3]. Due to
the coexistence of the various types of low-power BSs, collectively called small cells, with the
conventional high-power macrocells, the resulting network is often termed as a heterogeneous
cellular network (HetNet). Because of the increasing irregularity of BS locations in HetNets,
random spatial models have become preferred choice for the accurate modeling and tractable
analysis of these networks. The most popular approach is to model the locations of different
classes of BSs by independent PPPs and perform the downlink analysis at a typical user
chosen independent of the BS locations; see [23,32,33] and the references therein. However,
none of the prior works has focused on developing tools for the more realistic case of user-
centric deployments in which the user and BS locations are correlated. Developing new tools
to fill this gap is the main goal of this chapter.

2.1.1 Related works
Stochastic geometry has recently emerged as a useful tool for the analysis of cellular

networks. Building on the single-tier cellular model developed in [20], a multi-tier HetNet
model was first developed in[21, 34], which was then extended in [22, 35, 36]. While the
initial works were mainly focused on the downlink coverage and rate analyses, the models
have since been extended in multiple ways, such as for load aware modeling of HetNets
in [37], traffic offloading in [24], and throughput optimization in [38]. Please refer to [22,
23, 31, 32] for more pedagogical treatment of the topic as well as extensive surveys of the
prior art. While PPP remains a popular abstraction of spatial distribution of cellular BSs
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randomly and independently coexisting over a finite but large area, a common assumption
of the aforementioned analysis, as noted above, is that the users are uniformly distributed
independent of the BS locations. However, in reality, the users form hotspots, which are
where some types of small cells, such as picocells are deployed to enhance coverage and
capacity [39]. As a result, the user-centric deployment of small cells is one of the dominant
themes in future wireless architectures [40]. In such architectures, one can envision small
cells being deployed to serve clusters of users. Such models are also being used by the
standardization bodies, such as 3GPP [2,3]. While there have been attempts to model such
clusters of small cells by using PCP, e.g., see [41–45], the user distribution is usually still
assumed to be independent of the BS locations.

As noted above, modeling and performance analysis of user-centric capacity-driven de-
ployment of small cells require accurate characterization of not only the spatial distribution
of users but also correlation between the BS and user locations. Existing works, however
sparse, on the analysis of correlated non-uniform user distributions can be classified into two
main directions. The first is to characterize the performance through detailed system-level
simulations [46–49]. As expected, the general philosophy is to capture the capacity-centric
deployments by assuming higher user densities in the vicinity of small cell BSs, e.g., see [46].
In [47], the authors proposed non-uniform correlated traffic pattern generation over space
and time based on log-normal or Weibull distribution. On similar lines, [48] has introduced a
low complexity PPP simulation approach for HetNets with correlated user and BS locations.
System level simulation shows that network performance significantly deteriorates with in-
creased heterogeneity of users if there exists no correlation among the users and the small
cell BS locations. But the HetNet performance improves if the small cell BSs are placed at
the cluster centers which are determined by means of clustering algorithms from a given user
distribution [49].

The second direction, in which the contributions are even sparser, is to use analytic tools
from stochastic geometry to characterize the performance of HetNets with non-uniform user
distributions. One notable contribution in this direction is the generative model proposed
in [50], where non-uniform user distribution is generated from the homogeneous PPP by
thinning the BS field independently, conditional on the active link from a typical user to
its serving BS. While the resulting model is tractable, it suffers from two shortcomings: (i)
it is restricted to single-tier networks and extension to HetNet is not straightforward, and
(ii) even for single-tier networks, it does not allow the inclusion of any general non-uniform
distribution of users in the model. In [51], the authors proposed a mixture of correlated and
uncorrelated user distribution with respect to small cell BS deployment and evaluated the
enhancement in coverage probability as a function of correlation coefficient. Correlation has
been introduced by generating users initially as an independent PPP and later shifting them
towards the BSs with some probability. In [38], the authors have considered clustered users
around femto-BSs as uniformly distributed on the circumference of a circle with fixed radius.
Besides, some other attempts have been made at including non-uniform user distributions
using simple models, especially in the context of indoor communications, e.g., see [52]. Over-
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all, we are still somewhat short-handed when it comes to handling the analysis of user-centric
deployments, which is the main focus of this chapter. With this brief overview of the prior
art, we now discuss our contributions next.

2.1.2 Contributions
New HetNet model

In this chapter, we develop a new and more practical HetNet model for accurately
capturing the non-uniform user distribution as well as correlation between the locations of
the users and BSs. In particular, the user locations have been modeled as superposition of
PCPs. Correlation between the users and BSs under user-centric capacity-driven deployment
has been captured by assuming the BS locations as the parent point processes of the cluster
processes of users. This model is flexible enough to include any kind of user distribution
around any arbitrary number of BS tiers as well as user distribution that is homogeneous
and independent of the BS locations. This approach builds on our recent work on modeling
device-to-device networks using PCPs [53].

Downlink analysis

We derive exact expression for the coverage probability of a typical user chosen randomly
from one of the clusters in this setup. The key step of our approach is the treatment
of the cluster center as an individual singleton tier. This enables the characterization of
key distance distributions, which ultimately lead to easy-to-use expressions for the Laplace
transform of interference distribution in all cases of interest. Using these components, we
derive the coverage probability of a randomly chosen user from one of the user clusters. After
characterizing the coverage probability under a general distribution of users, we specialize
our results for two popular PCPs, viz. Thomas and Matérn cluster processes. Next, we
provide upper and lower bounds on coverage probability which are computationally more
efficient than the exact expressions and reduce to closed form expressions for no shadowing
when the user distribution is modeled as Thomas or Matérn cluster process. Although our
analysis primarily focuses on users clustered around BS locations, we also consider users that
are independently and homogeneously located over the network modeled as a PPP and use
previously derived results for coverage [22] in conjunction to evaluate the overall coverage
probability for any randomly chosen user in our HetNet setup with mixed user distribution.

System design insights

Our analysis leads to several system-level design insights. First, it can be observed
that the coverage probability under the assumption of BS-user correlation is significantly
greater than that derived under the assumption of independence. While the assumption of
independence of BS and user locations does simplify analyses, the resulting coverage prob-
ability predictions may be significantly pessimistic. That being said, our results concretely
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Table 2.1: Summary of Notations

Notation Description
Φ

(BS,o)
k , λk PPP of BSs of kth open access tier, density of Φ

(BS,o)
k

Φ
(BS,c)
k , λ′k PPP of BSs of kth closed access tier, density of Φ

(BS,c)
k

B Set of BS tiers that have users clustered around them
Φu
i Point process modeling users clustered around BSs of Φ

(BS)
i

Φu(PPP) Locations of uniformly distributed users modeled as a homogeneous PPP
y0, Y0 Location of cluster center in Euclidean space, Y0 = ‖y0‖
Φ

(BS,o)
0 Tier 0 containing only the cluster center

Φk, λk Equivalent PPP of Φ
(BS,o)
k to incorporate shadowing, density of Φk

Φ′k, λ
′
k Equivalent PPP of Φ

(BS,c)
k to incorporate shadowing, density of Φ′k

Pk, hk,Vk Transmit power, small scale fading gain, shadowing gain for all links with BSs in Φ
(BS)
k

yk, xk Actual location of a BS in Φ
(BS)
k and location in transformed space (xk = V−

1
α

k yk)
Ni Average number of users per cluster of Φu

i

Rk Modified distance of nearest BS ∈ Φk, Rk = min ‖xk‖
b(0, r) Disc with radius r centered at origin
Io(j,k) Interference from all BSs ∈ Φk when user connects to a BS ∈ Φj

Ic(k) Interference from all BSs ∈ Φ′k
Pc

(i), Pc
(PPP) Coverage probability of a typical user in Φu

i , Φu(PPP)

Pc Overall coverage probability

demonstrate that the difference between the coverage probabilities corresponding to user-
centric and independent BS deployment becomes less significant as the cluster sizes (of user
cluster) increase. In the limit of cluster size going to infinity, the new coverage results are
shown to mathematically converge to the results obtained under independent user distri-
bution assumption. Second, as opposed to the previous works, the coverage probability of
users clustered around BSs under interference-limited open access network is a function of
BS transmission power. Our analysis shows that coverage probability can be improved by
increasing transmission power of small cell BSs located at centers of the user clusters.

2.2 System Model

2.2.1 BS deployment

Consider a K-tier HetNet, where BSs across tiers (or classes) differ in terms of their
transmit powers and deployment densities. For notational simplicity, defineK = {1, 2, . . . , K}
as the indices of the K tiers. The locations of the kth-tier BSs are modeled by an indepen-
dent homogeneous PPP Φ

(BS)
k of density λk > 0 (k ∈ K). The kth-tier BSs are assumed to

transmit at the same power Pk. As is usually the case, we assume that a fraction of kth-tier
BSs are in open access for the user of interest while the rest are in closed access. The kth-tier
open and closed access BSs are modeled by two independent PPPs Φ

(BS,o)
k and Φ

(BS,c)
k with

densities λk and λ′k, respectively, where Φ
(BS)
k = Φ

(BS,o)
k ∪ Φ

(BS,c)
k and λ(BS)

k = λk + λ′k.
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2.2.2 User distribution
Unlike prior art that focused almost entirely on the performance analysis of users that

are uniformly distributed in the network independent of the BS locations, we focus on a
correlated setup where users are more likely to lie closer to the BSs. Since small cells are
usually deployed in the areas of high user density, this is a much more accurate approach for
modeling HetNets compared to the one where users and BSs are both modeled as independent
PPPs. We model this scenario by modeling the locations of the users by a PCP with one
small cell deployed at the center of each user cluster. To maintain generality, we assume that
a subset B ⊂ K tiers out of K tiers have clusters of users around the BSs. In particular, given
the location of a BS in the ith tier acting as cluster center (i ∈ B), the users of the cluster are
assumed to be symmetrically, independently, and identically distributed (i.i.d.) around it.
Union of all such locations of users around the BSs of the ith tier forms a PCP [13], denoted
by Φu

i , where the parent point process of Φu
i is Φ

(BS)
i . To maintain generality, we assume

that the user location Z
(i)
u ∈ R2 with respect to its cluster center follows some arbitrary

distribution with probability density function (PDF) f
Z

(i)
u

(·), which may not necessarily be
the same across tiers. This allows to capture the fact the cluster size may affect the choice
of small cell to be deployed there. For instance, it may be sufficient to deploy a low power
femtocell to serve a small cluster of users in a coffee shop, whereas a relatively higher power
picocell may be needed to serve a cluster of users at a big shopping mall or at an airport.
After deriving all the results in terms of the general distributions, we will specialize them to
two cases of interest where Φu

i is modeled as: (i) Thomas cluster process in which the users
are scattered according to a symmetric normal distribution of variance σ2

i around the BSs
of Φ

(BS)
i [54], hence,

f
Z

(i)
u

(z) =
1

2πσ2
i

exp

(
−‖z‖

2

2σ2
i

)
, z ∈ R2, (2.1)

and (ii) Matérn cluster process which assumes symmetric uniform spatial distribution of
users around the cluster center within a circular disc of radius Ri, thus

f
Z

(i)
u

(z) =

{
1

πR2
i

if ‖z‖ ≤ Ri

0 otherwise
, (2.2)

where z is a realization of the random vector Z
(i)
u . While our primary interest is in these

clustered users, we also consider users that are homogeneously distributed over the network
independent of the BS locations, for instance, pedestrians and users in transit. These users
are better modeled by a PPP as done in literature (see [21,22,35,55,56] for a small subset).
Thus, in addition to the user clusters modeling users in the hotspots, we also consider an
independent point process of users Φu(PPP) which is a PPP of density λ(PPP). Fig. 2.1 shows
the two-tier HetNet setup with high power macro-BSs overlaid with an independent PPP of
denser but low power small cell BSs. Fig. 2.1a illustrates the popular system model used in
the literature where users are modeled as Φu(PPP) [21,22,34,35,55]. Fig. 2.1b highlights the
correlated setup where users are only clustered around small cell BSs. The general scenario
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(a) Uniformly distributed
users independent of the BS
locations (prior art).

(b) Users clustered around
small cell BSs (this chapter).

(c) Mixed (clustered and uni-
formly distributed) user dis-
tribution (this chapter).

Figure 2.1: Macro (green squares) and small cell BSs (black dots) are distributed as inde-
pendent PPPs λ2 = λ′2 = λ1/10. The uniformly distributed users are represented by small
blue dots and clustered users by small red dots. The average number of users per cluster
(wherever applicable) is 10.

i.e. the mixed user distribution formed by the superposition of PPP and PCP has been
depicted in Fig. 2.1c.

Since the downlink analysis at the location of a typical user of Φu(PPP) is well-known,
in this paper we will focus exclusively on the downlink performance of a typical user of Φu

i ,
which is a randomly chosen user from a randomly chosen cluster of Φu

i , also termed as the
representative cluster. In other words, we will primarily focus on the scenario depicted in
Fig. 2.1b (and then extend our results and insights to scenario depicted in Fig. 2.1c). Since
the PPPs are stationary, we can transform the origin to the location of this typical user.
Quite reasonably, we assume that the BS at the center of the representative cluster is in
open access mode. This assumption can be easily relaxed without much effort. Denote the
location of the representative cluster center by y0 ∈ Φ

(BS,o)
i . Now Φ

(BS,o)
i can be partitioned

into two sets: (i) representative cluster center y0, and (ii) the rest of the points Φ
(BS,o)
i \ y0.

By Slivnyak’s theorem, it can be argued that Φ
(BS,o)
i \y0 has the same distribution as Φ

(BS,o)
i

[54]. For notational simplicity, we form an additional tier (call it tier 0) consisting of a single
point y0, i.e., Φ

(BS)
0 ≡ Φ

(BS,o)
0 ≡ {y0}. Then, the set of indices of all tiers is enriched to

K1 = {0} ∪ K = {0, 1, 2, . . . , K}. The user can either connect to its own cluster center i.e.
the BS in Φ

(BS,o)
0 , or to some other BS belonging to one of the tiers Φ

(BS,o)
1 , . . . ,Φ

(BS,o)
K .

2.2.3 Channel model and user association

The received power at the location of the typical user at origin from a BS at yk ∈ Φ
(BS)
k

(k ∈ K1) is modeled as P (yk) = PkhkVk‖yk‖−α, where, α > 2 is the path loss exponent, hyk is
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the small-scale fading gain and Vk is the shadowing gain. Under Rayleigh fading assumption,
{hk} is a sequence of i.i.d. exponential random variables (RVs) with hxk ∼ exp(1). For large
scale shadowing, we assume {Vk} to be sequence of i.i.d. log-normal RVs , i.e., 10 logVk ∼
N (µk, η

2
k), with µk and ηk respectively being the mean and standard deviation (in dB) of the

channel power under shadowing. In this model, we assume average received power based cell
selection in which a typical user connects to the BS that provides maximum received power
averaged over small-scale fading. The serving BS will be one from the K + 1 candidate BSs
from each tier. The location of such candidate serving BS from Φ

(BS,o)
k can be denoted as

y∗k = arg max
yk∈Φ

(BS,o)
k

PkVk‖yk‖−α = arg max
yk∈Φ

(BS,o)
k

Pk

(
V−

1
α

k ‖yk‖
)−α

. (2.3)

Since the 0th tier consists of only a single BS, i.e., the cluster center, there is only one choice
of the candidate serving BS from Φ

(BS,o)
0 , i.e., y∗0 ≡ y0. The serving BS will be one of these

candidate serving BSs, denoted by

y∗ = arg max
y∈{y∗k}

PkVk‖y‖−α. (2.4)

Using the displacement theorem of PPPs [17, Section 1.3.3] , it was shown in [57,58] that if
each point in a PPP Φ

(BS,o)
k (Φ(BS,c)

k ) is independently displaced such that the transformed
location becomes xk = V−

1
α

k yk, then, the resultant point process remains a PPP, which we
denote by Φk (Φ′k) with density λk = λkE

[
V

2
α
k

]
(λ′k = λ′kE

[
V

2
α
k

]
). This transformation is

valid for any arbitrary distribution of Vk with PDF fVk(·) as long as E(V
2
α
k ) is finite, which is

indeed true for log-normal distribution. Consequently, we can express instantaneous received
power from a BS ∈ Φk as Pkhk‖xk‖−α. Then, the location of candidate serving BS in Φk

can be written as

x∗k = arg max
xk∈Φk

Pk‖xk‖−α. (2.5)

For k = 0, we apply similar transformation to the point y0 ∈ Φ
(BS,o)
0 and denote the trans-

formed process as Φ0 where x0 ≡ V−
1
α

0 y0. Then, the serving BS at x∗ will be

x∗ = arg max
x∈{x∗k}

Pk‖x‖−α. (2.6)

It is worth noting that in the absence of shadowing, the candidate serving BS from a given
tier will be the BS closest to the typical user from that tier in terms of the Euclidean distance.
This is clearly not true in the presence of shadowing because of the possibility of a farther
off BS providing higher average received power than the closest BS. However, by applying
displacement theorem, the effect of shadowing gains has been incorporated at the modified
locations xk such that the strongest BS in the equivalent PPP Φk is also the closest in terms
of the Euclidean distance. As demonstrated in the literature (e.g., see[57, 58]) and the next
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two Sections, this simplifies the coverage probability analysis in the presence of shadowing
significantly.

We consider interference-limited network and ignore thermal noise. For notational sim-
plicity, let us define the association event to tier j as SΦj such that 1SΦj

= 1(x∗ = x∗j)

(here 1(·) is the indicator function). The Signal-to-Interference Ratio (SIR) experienced by
a typical user at origin when 1SΦj

= 1 can be expressed as

SIR(‖x∗‖) ≡ Pjhj‖x∗‖−α∑
k∈K1

∑
xk∈Φk∪Φ′k\{x∗}

Pkhk‖xk‖−α
. (2.7)

For quick reference, the notations used in this chapter are summarized in Table 4.1.

Remark 2.1. While we transform all the PPPs to equivalent PPPs to incorporate shad-
owing, the impact of shadowing on the link between the typical user and its cluster center,
i.e., x0 = V

1
α
0 y0, needs to be handled separately. For this, we have two alternatives. First is

to find the distribution of x0 as a function of the distributions of V0 and y0. Second is to
proceed with the analysis by conditioning on shadowing variable V0 and decondtioning at
the last step. We take the second approach since it gives simpler intermediate results which
can be readily used for no-shadowing scenario by putting Vk ≡ 1.

2.3 Association probability and serving distance
This is the first technical section of the chapter, where we derive the probability that

a typical user is served by a given tier j ∈ K1, which is usually termed as the association
probability. We will then derive the distribution of ‖x∗‖ conditioned on SΦj , i.e., the distance
from the typical user to its serving BS conditioned on the the event that it belongs to the jth
open access tier. Recall that the candidate serving BS located at xk from the equivalent PPP
Φk is the one that is nearest to the typical user located at the origin. Let us call Rk = ‖x∗k‖
as the RV denoting the distance from the typical user to the nearest point of Φk. Since Φk

(k ∈ K) are independent homogeneous PPPs, the distribution of Rk, k ∈ K, is [54]

PDF: fRk(rk) = 2πλkrk exp(−πλkr2
k) rk ≥ 0, (2.8a)

CCDF: FRk(rk) = exp(−πλkr2
k) rk ≥ 0. (2.8b)

In a similar way, we can define modified distance R0 = ‖x0‖ = V−
1
α

0 ‖y0‖. As noted in
Remark 2.1, we will proceed with the analysis by conditioning on the shadowing gain V0

and then deconditioning on V0 at the very end. Since R0 is just a scaled version of ‖y0‖, it
suffices to find the distribution of Y0 ≡ ‖y0‖, which we do next.

Recall that the typical user is located at the origin, which means the relative location of
the cluster center with respect to the typical user, i.e., y0, has the same distribution as that
of Z(i)

u . Using standard transformation technique from Cartesian to polar coordinates, we
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can obtain the distribution of distance Y0 from the joint distribution of position coordinates
(t1, t2), where y0 = (t1, t2) is in Cartesian domain. Let us denote the joint PDF of the polar
coordinates (Y0,Θ) as fY0,Θ(·). Then

fY0,Θ(y0, θ) = fy0(t1, t2)×
∣∣∣∣∂
(
t1, t2
y0, θ

)∣∣∣∣ , (2.9)

where

∂

(
t1, t2
y0, θ

)
=




∂t1
∂y0

∂t1
∂θ

∂t2
∂y0

∂t2
∂θ


 .

From the joint distribution, the marginal distribution of distance Y0 can now be computed
by integrating over θ as

fY0(y0) =

∫ 2π

0

fY0,Θ(y0, θ)dθ. (2.10)

Remark 2.2. In the special case when Φu
i is a Thomas cluster process, user coordinates in

Cartesian domain are i.i.d. normal RVs with variance σ2
i . Then, Y0 is Rayleigh distributed

with PDF and CCDF [59]:

PDF: fY0(y0) =
y0

σ2
i

exp

(−y2
0

2σ2
i

)
, y0 ≥ 0, (2.11a)

CCDF: F Y0(y0) = exp

(−y2
0

2σ2
i

)
, y0 ≥ 0. (2.11b)

Remark 2.3. If Φu
i is a Matérn cluster process, the PDF and CCDF of Y0 are:

PDF: fY0(y0) =
2y0

R2
i

, 0 ≤ y0 ≤ Ri, (2.12a)

CCDF: F Y0(y0) =
R2
i − y2

0

R2
i

, 0 ≤ y0 ≤ Ri. (2.12b)

2.3.1 Association probability
To derive association probability, let us first characterize the association event SΦj as:

1SΦj
= 1(arg max

k∈K1

PkR
−α
k = j) =

⋂

k∈K1

1
(
Rk > P̄jkRj

)
, (2.13)

where P̄jk =
(
Pk
Pj

)1/α

and 1(·) is the indicator function of the random vectorR = [R0, R1, ..., Rk].
Note that since the 0th tier is derived from the ith tier, we have P0 ≡ Pi. The association
probability for each tier is now defined as follows.
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Definition 2.4. Association probability, Aj for jth tier, ∀j ∈ K1 is defined as the probability
that the typical user will be served by the jth tier. It can be mathematically expressed as

Aj = P(SΦj). (2.14)

The following Lemma deals with the conditional association probability to Φj.

Lemma 2.5. Conditional association probability of the jth tier given V0 = v0 is

Aj|v0 =





EY0

[
K∏
k=1

FRk(P̄0kv
− 1
α

0 Y0)

]
if j = 0;

ERj
[
F Y0(v

1
α
0 P̄j0Rj)

K∏
k=1
k 6=j

FRk(P̄jkRj)

]
otherwise.

(2.15)

Proof. According to the definition of SΦj in (2.13), we can write from (2.14),

Aj|v0 = ER


 ⋂

k∈K1\{j}

1
(
Rk > P̄jkRj

)
|V0 = v0




(a)
= ERj

K∏

k=0
k 6=j

P
(
Rk > P̄jkRj|v0

)
= ERj

K∏

k=0
k 6=j

FRk(P̄jkRj|vo), (2.16)

where (a) comes from the fact that Φk-s are independent, hence are Rk-s. For the rest of the
proof, we need to consider the two cases of j = 0 and j 6= 0 separately. Note that only the
RV R0 among all Rj-s is the function of V0. For case 1: j = 0

Aj|v0 = ER0

K∏

k=1

FRk(P̄jkR0|v0) = EY0

K∏

k=1

FRk(P̄0kv
− 1
α

0 Y0),

and for case 2: j ∈ K

Aj|v0 = ERj
[ K∏

k=0
k 6=j

P(Rk > P̄jkRj|v0)

]
= ERj

[
P(v

− 1
α

0 Y0 > P̄j0Rj)
K∏

k=1
k 6=j

P(Rk > P̄jkRj)

]

= ERj
[
F Y0(v

1
α
0 P̄j0Rj)

K∏

k=1
k 6=j

FRk(P̄jkRj)

]
.

Remark 2.6. Association probabilities of the jth tier can be obtained by taking expectation
over Aj|V0 with respect to V0, i.e.,

Aj = EV0(Aj|V0). (2.17)
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From Lemma 2.5, we can obtain the expressions for the association probabilities to
different open access tiers when Φu

i is Thomas or Matérn cluster process. The conditional
probabilities in these cases can be reduced to closed form expressions. The results are
presented next.

Corollary 2.7. When Φu
i is a Thomas cluster process, conditional association probability of

the jth tier given V0 = v0 is:

Aj|v0 =
λj

K∑
k=0

P̄ 2
jkλk

, ∀j ∈ K1, (2.18)

where λ0 is defined as λ0 =
v

2
α
0

2πσ2
i
.

Proof. When j = 0, from (2.15), we get, A0|v0 =
∫
y0>0

K∏
k=1

FRk(P̄0kv
− 1
α

0 y0) fY0(y0) dy0.

Substituting fY0(y0) from (2.11a) and FRk(P̄0kv
− 1
α

0 y0) from (2.8b), we get,

A0|v0 =

∞∫

0

exp

(
− π

K∑

k=1

λkP̄0kv
− 2
α

0 y2
0

)
y0

σ2
i

exp

(
− y2

0

2σ2
i

)
dy0 =

v
2
α
0

2πσ2
i

v
2
α
0

2πσ2
i

+
K∑
k=1

P̄ 2
0kλk

.

Putting λ0 =
v

2
α
0

2πσ2
i
, we get the desired result. Note that P̄00 = 1. For j 6= 0,

Aj|v0 =

∞∫

0

F Y0(v
1
α
0 P̄j0Rj)

K∏

k=1
k 6=j

FRk(P̄jkrj)fRj(rj) drj

=

∞∫

0

exp

(
−(P̄j0v

1
α
0 rj)

2

2σ2
i

)
exp

(
− π

K∑

k=1
k 6=j

λkP̄
2
jkr

2
j

)
×

2πλj exp(−2πλjr
2
j ) rj drj =

λj

P̄ 2
j0

2πσ2
i

+
K∑
k=1

P̄ 2
jkλk

=
λj

K∑
k=0

P̄ 2
jkλk

.

The last step was derived by putting λ0 =
v

2
α
0

2πσ2
i
.
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Corollary 2.8. If Φu
i is a Matérn cluster process, conditional association probability of the

jth tier given V0 = v0 is:

Aj|v0 =





v
2
α
0

R2
iZ0

(
1− exp

(
− v−

2
α

0 Z0R2
i

))
if j = 0

λj
K∑
k=1

P̄ 2
jkλk

− πλjP̄ 2
j0v

2
α
0

1−exp(−ZjR2
i )(ZjR2

i+1)
R2
iZ2

j
if j ∈ K

, (2.19)

where Zj = π
K∑
k=1

λkP̄
2
jk, ∀ j ∈ K1.

Proof. Similar to Corollary 2.7, for j = 0, plugging (2.8b) and (2.12a) in (2.15), we get,

A0|v0 =

Ri∫

0

exp

(
− π

K∑

k=1

λkP̄
2
0kv
− 2
α

0 y2
0

)
2y0

R2
i

dy0 =
v

2
α
0

R2
iZ0

(
1− exp

(
− v−

2
α

0 Z0R2
i

))
,

where Z0 = π
K∑
k=1

λkP̄
2
0k. Now for j ∈ K, using (2.8a), (2.8b) and (2.12b) in (2.14) and

proceeding according to the proof of Corollary 2.7, we get,

Aj|v0 = 2πλj

Ri∫

0

exp

(
−π

K∑

k=1

λkP̄
2
jkr

2
j

)
R2
i − (P̄j0v

1
α
0 rj)

2

R2
i

rj drj

=
λj

K∑
k=1

P̄ 2
jkλk

− πλjP̄ 2
j0v

2
α
0

1− exp(−ZjR2
i ) (ZjR2

i + 1)

R2
iZ2

j

, where Zj = π
K∑

k=1

λkP̄
2
jk for j ∈ K.

2.3.2 Serving distance distribution
In this section, we derive the distribution of ‖x∗‖ when 1SΦj

= 1 , i.e., the serving
distance from the typical user to its serving BS when it is in Φj. We will call this RV Wj.
Conditioned on SΦj , Wj is simply the distance to the nearest BS in Φj. Hence Wj is related
to Rj as Wj = Rj|SΦj . The conditional PDF of Wj given V0 = v0 is derived in the next
Lemma.
Lemma 2.9. Conditional distribution of serving distance Wj at V0 = v0 is obtained by

fW0|V0(w0|v0) =
1

A0|ν0

K∏

k=1

v
1
α
0 FRk

(
P̄0kw0

)
fY0(v

1
α
0 w0)

fWj |V0(wj|v0) =
1

Aj|ν0

F Y0(v
1
α
0 P̄j0wj)

K∏

k=1
k 6=j

FRk(P̄jkwj)fRj(wj), ∀j ∈ K. (2.20)
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Proof. The conditional CCDF of Wj in this case is, P[Wj > wj|V0] =

P[Rj > wj|SΦj ,V0] =
P
(
Rj > wj|V0, SΦj |V0

)

P(SΦj |V0)

(a)
=

1

Aj|V0

K∏

k=1
k 6=j

[
P(PjR

−α
j > PkR

−α
k |Rj > wj,V0)

]
,

where (a) follows from (2.16). For case 1: when j = 0, given V0 = v0, P[W0 > w0|V0 = v0] =

1

A0|v0

K∏

k=1

P(P0v0Y
−α

0 > PkR
−α
k |v

− 1
α

0 Y0 > w0) =
1

A0|v0

∞∫

v
1
α
0 w0

K∏

k=1

FRk(P̄0kv
− 1
α

0 y0)fY0(y0) dy0.

Thus, the conditional distribution of W0 is obtained by

fW0|V0(w0|v0) =
d

dw0

(1− P[W0 > w0|V0 = v0]) = v
1
α
0

K∏
k=1

FRk

(
P̄0kw0

)
fY0(v

1
α
0 w0)

A0|v0

.

For case 2: when j ∈ K,

P[Wj > wj|v0] =
1

Aj|v0

P(v
− 1
α

0 Y0 > P̄j0Rj)
K∏

k=1 k 6=j

P(PjR
−α
j > PkR

−α
k |Rj > wj).

The rest of the proof continues in the same line of case 2 in Lemma 2.5.

Further, we obtain closed-form expressions of fWj |V0(·) for Thomas and Matérn cluster
processes by putting the corresponding PDFs and CCDFs in the following Corollaries.

Corollary 2.10. If Φu
i is Thomas cluster process, conditional PDF of serving distance given

V0 = v0 can be expressed as

fWj |V0(wj|v0) =
2πλj
Aj|v0

exp

(
−π
(

K∑

k=1

P̄ 2
jkλk

)
w2
j

)
wj, ∀j ∈ K1. (2.21)

Proof. The serving distance distribution when the user is served by its own cluster center is

fW0|V0(w0|v0) =
v

1
α
0

A0|v0

K∏

k=1

FRk

(
P̄0kw0

)
fY0(v

1
α
0 w0).

Substituting FRk(P̄0kw0) from (2.8b) and fY0(v
1
α
0 w0) from (2.11a),

fW0|V0(w0|v0) =
v

1
α
0

A0|v0

K∏

k=1

exp

(
−π

K∑

k=1

λkP̄
2
0kw

2
0

)
v

1
α
0 w0

σ2
i

exp

(
− v

2
α
0 w

2
0

2σ2
i

)
. (2.22)
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Putting λ0 as defined before, we obtain the desired result. For other open access tiers except
the 0th tier we can perform similar steps to find fWj |V0(wj|v0). Starting from Lemma 2.9,

fWj |V0(wj|v0) =
1

Aj|v0

F Y0(v
1
α
0 P̄j0wj)

K∏

k=1
k 6=j

FRk(P̄jkwj)fRj(wj)

(a)
=

1

Aj|v0

exp

(
− v

2
α
0 P̄

2
j0w

2
j

2σ2
i

)
exp


−π

K∑

k=1
k 6=j

λkP̄
2
jkw

2
j


 2πλj exp

(
−πλjw2

j

)
wj

=
2πλj
Aj|v0

exp

(
−π

K∑

k=0

λkP̄
2
jkw

2
j

)
wj,

where (a) follows from substitution of fRj(·), FRk(·), FR0(·) by (2.8a), (2.8b) and (2.11b).

Corollary 2.11. If Φu
i is Matérn cluster process, the conditional distribution of serving

distance Wj given V0 = v0 can be expressed as

fWj |V0(wj|v0) =





1
A0|v0

exp

(
−π

K∑
k=1

λkP̄
2
0kw

2
0

)
2v

2
α
0 w0

R2
i

if j = 0

1
Aj|v0

2πλj exp

(
−π

K∑
k=1

λkP̄
2
jkw

2
j

)
R2
i−v

2
α
0 w2

j

R2
i

wj if j ∈ K
, (2.23)

where 0 ≤ wj ≤ Ri. For wj > Ri, fWj |V0(wj|v0) = 0, ∀j ∈ K1.

Proof. Substituting fY0(·) for Matérn cluster process from (2.12a) and CCDF of Rk from
(2.8b) in (2.20) and proceeding as before, fW0|V0(·) can be derived. Similarly, fWj |V0(·) is
obtained by substituting F Y0(·) from (2.12b). For wj > Ri, fWj |V0(wj|v0) = 0, ∀j ∈ K1 as
fY0(·) and F Y0(·) take zero value beyond this range.

2.4 Coverage probability analysis
This is the second technical section of the chapter where we use the association probabil-

ity and the distance distribution results obtained in the previous section to derive easy-to-use
expressions for the coverage probability of a typical user of Φu

i in a user-centric deployment.

According to the association policy, it is easy to deduce that if the typical user is
served by a BS ∈ Φj located at a distance Wj, there exist no kth tier BSs, ∀k ∈ K1, within
a disc of radius P̄jkWj centered at the location of typical user (origin). We denote this
exclusion disc by b(0, P̄jkWj). Assuming association with the jth tier, the total interference
experienced by the typical user originates from two independent sets of BSs: (i) ∪k∈K1Φk \
b(0,Wj), the set of open access BSs lying beyond the exclusion zone b(0,Wj) and (ii) ∪k∈KΦ′k,
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the set of closed access BSs. As all the interferers from the kth open access tier will lie
outside b(0, P̄jkWj), we define interference from the kth open-access tier as Io(j,k)(Wj) =∑

xk∈Φk\b(0,P̄jkWj)
Pkhxk‖xk‖−α. We express the total contribution of interference from all

open access tiers as

Io(j)(Wj) =
K∑

k=0

Io(j,k)(Wj). (2.24)

It is clear that the interference from the open-access tiers defined above depends on the
serving distanceWj. However, it is not the case with the closed access tiers. Recall that since
the closed access tiers do not participate in the cell selection procedure, there is no exclusion
zone in their interference field. In particular, the closed access BSs may lie closer to the
typical user than its serving BS. We denote the closed access interference by Ic =

∑K
k=1 Ic(k),

where Ic(k) is the interference from all the BSs of the kth closed access tier Φ′k. Using the
variables defined above, we can now express SIR defined in (2.7) at the typical user when it
is served by the BS located at a distance Wj in a compact form as a function of the RV Wj

as: SIR(Wj) =
PjhxjW

−α
j

Io(j)(Wj)+Ic .

2.4.1 Coverage probability
A typical user is said to be in coverage if SIR(Wj) > τ , where τ denotes modulation-

coding specific SIR threshold required for successful reception. The coverage probability can
now be formally defined as follows.
Definition 2.12 (Coverage probability). Per-tier coverage probability for Φj can be defined
as the probability that the typical user of Φu

i is in coverage conditioned on the fact that it
is served by a BS from Φj. Mathematically,

Pc
(i)
j = E(1(SIR(Wj) > τ)). (2.25)

The total coverage probability Pc
(i) can now be defined in terms of the per-tier coverage

probability as

Pc
(i) =

K∑

j=0

AjPc(i)
j , (2.26)

where Aj is given by (2.14).

With the expressions of Aj|V0 and fWj |V0(·) at hand, we focus on the derivation of
coverage probability Pc

(i). Note that using the Rayleigh fading assumption along with the
fact that the open access interference terms {Io(j,k)} and the closed access interference terms
{Ic(k)} are all independent of each other, we can express the per-tier coverage probability
in terms of the product of Laplace transforms of these interference terms. This result was
presented for a special case of Thomas cluster process in the conference version of this
chapter [60] (for K-tier HetNets) as well as in [61] (for single-tier cellular networks).
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Theorem 2.13 (Coverage probability). Conditional per-tier coverage probability of the typ-
ical user from Φu

i given that the serving BS being from the jth tier and V0 = v0 is

Pc
(i)
j|v0

=

∫

wj>0

LIo(j,0)|V0

(
τwαj
Pj
|v0

) K∏

k=1

LIo(j,k)

(
τwαj
Pi

)
LIc(k)

(
τwαj
Pj

)
fWj |V0(wj|v0) dwj, (2.27)

and the coverage probability of a typical user from Φu
i can be expressed as

Pc
(i) = EV0

[
K∑

j=0

Aj|V0Pc
(i)
j|V0

]
, (2.28)

where LIo(j,0)|V0
(s|v0) is the conditional Laplace transform of Io(j,0), i.e.,

LIo(j,0)|V0
(s|v0) ≡ E

[
exp(−sIo(j,0))|V0 = v0

]

and LIo(j,k)
(s) ≡ E

[
exp(−sIo(j,k))

]
; LIc(k)

(s) ≡ E
[
exp(−sIc(k))

]
respectively denote the

Laplace transforms of interference of the kth open and closed access tiers (k ∈ K).

Proof. Recalling the definition of Pc(i)
j in (2.25), we first calculate the conditional probability,

P(SIR(Wj) > τ |Wj = wj,V0 = v0) ∀j ∈ K1. The final result can be obtained by taking
expectation with respect to Wj and V0. For case 1: when j ∈ K,

P
(

Pjhxjw
−α
j

K∑
k=0

Io(j,k) + Ic
> τ |V0 = v0

)

(a)
= E exp

(
−τw

α
j

Pj

K∑

k=0

(
Io(j,k) + Ic(k)

)
|V0 = v0

)

(b)
= E exp

(
−τw

α
j

Pj
Io(j,0)|V0 = v0

)
E exp

(
−τw

α
j

Pj

K∑

k=1

Io(j,k)

)
E exp

(
−τw

α
j

Pj

K∑

k=1

Ic(k)

)

= LIo(j,0)

(
τwαj
Pj
|v0

) K∏

k=1

LIo(j,k)

(
τwαj
Pj

) K∏

k=1

LIc(k)

(
τwαj
Pj

)
,

where (a) follows from hj ∼ exp(1), (b) is due to the independence of the interference from
open and closed access tiers. Also note that none of the interference components except
Io(j,0) depends on V0.

Case 2: For j = 0, no contribution due to Io(0,0) will be accounted for. Hence,

P(SIR(W0) > τ |W0 = w0) =
K∏

k=1

LI0(0,k)

(
τwα0
Pj

) K∏

k=1

LIc(k)

(
τwα0
Pj

)
.
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Note that the conditioning on V0 appears only in the first term, i.e. the Laplace trans-
form of Io(j,0) since the interference from the BS at cluster center is only influenced by V0

while the other interference terms are independent of V0.

2.4.2 Laplace transform of interference
As evident from Theorem 2.13, the Laplace transform of interference from different

tiers are the main components of the coverage probability expression. The following three
Lemmas deal with the Laplace transforms of the interference from different tiers. We first
focus on the interference originating from all the open access tiers except the interference
from the 0th tier which requires separate treatment.

Lemma 2.14. Given a typical user of Φu
i is served by a BS ∈ Φj (j ∈ K) at a distance

Wj = wj, Laplace transform of Io(j,k), ∀k ∈ K, evaluated at s =
τwαj
Pj

is

LIo(j,k)

(
τwαj
Pj

)
= exp

(
−πP̄ 2

jkλkG(α, τ)w2
j

)
, (2.29)

with G(α, τ) =
2τ

α− 2
2F1

[
1, 1− 2

α
; 2− 2

α
,−τ

]
, (2.30)

where 2F1[a, b, c, t] = Γ(c)
Γ(b)Γ(c−b)

1∫
0

zb−1(1−z)c−b−1

(1−tz)a dz is Gaussian Hypergeometric function.

Proof. By definition, the Laplace transform of interference is LIo(j,k)
(s) = E(exp(−sIo(j,k))) =

E
[

exp

(
− s

∑

xk∈Φk
\b(0,P̄jkWj)

Pkhxk‖xk‖−α
)]

(a)
= EΦk




∏

xk∈Φk
\b(0,P̄jkWj)

Ehk
(
exp

(
−sPkhxk‖xk‖−α

))



(b)
= EΦk




∏

xk∈Φk
\b(0,P̄jkWj)

1

1 + sPk‖xk‖−α




(c)
= exp

(
− 2πλk

∞∫

P̄jkWj

(
1− 1

1 + sPkr−α

)
r dr

)
,

(2.31)

where (a) is due to the i.i.d. assumption of hk, (b) follows from hk ∼ exp(1), (c) follows
from the transformation to polar coordinates and probability generating functional of ho-
mogeneous PPP [54]. The final result can be obtained by using the integral in [62, Eq.
3.194.1].

After dealing with the interference from all open access tiers Φk ∀k ∈ K, we now focus
on the 0th tier, which consists of only the cluster center.
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Lemma 2.15. Given a typical user of Φu
i connects to the BS ∈ Φj with j ∈ K at a distance

Wj = wj, the Laplace transform of Io(j,0) at s =
τwαj
Pj

conditioned on V0 = v0 is

LIo(j,0)|V0

(
τwαj
Pj

∣∣∣∣v0

)
=

∫

y0>v
1
α
0 P̄jiwj

1

1 +

(
y0

v
1
α
0 P̄jiwj

)−α
fY0(y0)

F Y0(v
1
α
0 P̄jiwj)

dy0. (2.32)

Proof. Recall that since the 0th tier is created from the ith open-access tier, the transmit
power P0 ≡ Pi. If the serving BS ∈ Φj (j ∈ K) lies at a distance Wj = wj, due to the
formation of virtual exclusion zone around the typical user, the cluster center acting as an
interferer will lie outside b(0, P̄jiwj). Thus, the PDF of distance from the typical user to
cluster center conditioned on Y0 > v

1
α
0 P̄jiwj is fY0(y0|Y0 > v

1
α
0 P̄jiwj) =

fY0
(y0)

FY0

(
v

1
α
0 P̄jiwj

) , where
y0 > v

1
α
0 P̄jiwj. The conditional Laplace transform LIo(j,0)|V0

(s|v0) can be expressed as

EY0

(
Eh0

(
exp

(
−sPih0v0Y

−α
0

))
|R0 > P̄jiwj

)

(a)
= EY0

[
1

1 + sPiv0Y
−α

0

|Y0 > v
1
α
0 P̄jiwj

]
(2.33)

=

∫

y0>v
1
α
0 P̄jiwj

1

1 + sPiv0y
−α
0

fY0(y0|Y0 > v
1
α
0 P̄jiwj) dy0

=

∫

y0>v
1
α
0 P̄jiwj

1

1 + sPiv0y
−α
0

fY0(y0)

F Y0

(
v

1
α
0 P̄jiwj

) dy0,

where (a) follows from h0 ∼ exp(1). This completes the proof.

In the next Corollary, we provide closed form upper and lower bounds on the Laplace
transform of interference from the BS at 0th tier. The lower bound is obtained by placing
the BS located at the cluster-center of the typical user on the boundary of the exclusion
disc b(0, P̄jiwj). The upper bound is found by simply ignoring the interference from this BS.
These bounds will be used later in this section to derive tight bounds on coverage probability.

Corollary 2.16. Conditional Laplace transform of Io(j,0) given V0 = v0 at s =
τwαj
Pj

is bounded
by

1

1 + τ
≤ LIo(j,0)|V0

(
τwαj
Pj

∣∣∣∣v0

)
≤ 1. (2.34)
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Proof. Following from (2.33)

LIo(j,0)|V0
(s|v0) = EY0

[
1

1 + sPiv0Y
−α

0

|Y0 > v
1
α
0 P̄jiwj

]
≥ 1

1 + sPiv0y
−α
0

∣∣∣∣
y0=v

1
α
0 P̄jiwj

.

Substation of s =
τwαj
Pj

gives the final result. The upper bound can be obtained by

LIo(j,0)|V0
(s|v0) = EY0

[
1

1 + sPiv0Y
−α

0

|Y0 > v
1
α
0 P̄jiwj

]
≤ lim

y0→∞

1

1 + sPiv0y
−α
0

= 1.

Lemma 2.17. Given the typical user of Φu
i connects to any BS ∈ Φj at a distance Wj = wj,

∀j ∈ K1, the Laplace transform of Ic(k) at s =
τwαj
Pj

is

LIc(k)

(
τwαj
Pj

)
= exp

(
−πλ′kH(α, τ)(P̄jkwj)

2
)
, (2.35)

where H(α, τ) = τ 2/α2 csc(2π
α

)

α
. (2.36)

Proof. The proof of this fairly well-known result follows in the same lines as that of Lemma 2.14,
with the only difference being the fact that Ic(k) is independent of Wj and hence, the lower
limit of the integral in (2.31) will be zero. The final form can be obtained by some algebraic
manipulations and using the properties of Gamma function [62, Eq. 3.241.2].

The expressions of Laplace transforms of interference derived in the above three Lemmas
are substituted in (2.27) to get the coverage probability. The results for no shadowing is
readily obtained by putting Vk ≡ 1, which omits the final deconditioning step with respect
to V0.

Corollary 2.18 (No shadowing). Under the assumption of no shadowing, the coverage prob-
ability of a typical user belonging to Φu

i can be expressed as

Pc
(i) = A0Pc

(i)
0 +

K∑

j=1

AjPc(i)
j , with (2.37)

Pc
(i)
0 =

1

A0

∫

w0>0

exp

(
− π

K∑

k=1

P̄ 2
0k (λk(G(α, τ) + 1) + λ′kH(α, τ))w2

0

)
fY0(w0) dw0, (2.38)

Pc
(i)
j =

2πλj
Aj

∫

wj>0

exp

(
− π

K∑

k=1

P̄ 2
jk (λk(G(α, τ) + 1) + λ′kH(α, τ))w2

j

)
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×
∫

y0>P̄jiwj

fY0(y0)

1 + τ( y0

P̄jiwj
)−α

dy0 wj dwj, (2.39)

where Aj is the association probability to Φ
(BS,o)
j given by: Aj = EYj

K∏
k=0
k 6=j

F Yk(P̄jkYj), ∀k ∈ K1.

Note that the PDF and CCDF of Yk for k ∈ K can be obtained by replacing λk (λ′k)
by λk (λ′k) in (2.8).

2.4.3 Bounds on coverage probability
In this section, we derive upper and lower bounds on coverage probability Pc

(i) by using
the results obtained in Corollary 2.16.

Proposition 2.19 (Bounds on Coverage). The conditional per-tier coverage probability for
j ∈ K can be bounded as Pc(i),L

j|V0
≤ Pc

(i)
j|V0
≤ Pc

(i),U
j|V0

, where

Pc
(i),U
j|V0

=

∫

wj>0

K∏

k=1

LIo(j,k)

(
τwαj
Pi

)
LIc(k)

(
τwαj
Pj

)
fWj |V0(wj|v0)dwj and (2.40)

Pc
(i),L
j|V0

=
1

1 + τ

∫

wj>0

K∏

k=1

LIo(j,k)

(
τwαj
Pi

)
LIc(k)

(
τwαj
Pj

)
fWj |V0(wj|v0)dwj. (2.41)

Hence, from (2.28), coverage probability Pc
(i) can be bounded by

EV0

[
A0|V0Pc

(i)
j|V0

+
K∑

j=1

Aj|V0Pc
(i),L
j|V0

]
≤ Pc

(i) ≤ EV0

[
A0|V0Pc

(i)
j|V0

+
K∑

j=1

Aj|V0Pc
(i),U
j|V0

]
. (2.42)

Proof. Using Corollary 2.16, bounds on Pc
(i)
j|V0

can be directly obtained by substituting the
bounds on LIo(j,0)|V0

(·) from (2.34) in (2.27).

For no shadowing, we can write simpler expressions for the upper and lower bound of
Pc

(i). This result is presented in the following Proposition.

Proposition 2.20 (Bounds on Coverage: No Shadowing). Pc(i)
j can be bounded by

2πλj
Aj(1 + τ)

∫

wj>0

exp

(
− π

K∑

k=1

P̄ 2
jk(λk(G(α, τ) + 1) + λ′kH(α, τ))w2

j

)
F Y0(P̄j0wj) wj dwj ≤ Pc

(i)
j
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≤ 2πλj
Aj

∫

wj>0

exp

(
− π

K∑

k=1

P̄ 2
jk(λk(G(α, τ) + 1) + λ′kH(α, τ))w2

j

)
F Y0(P̄j0wj) wj dwj.

(2.43)

The upper and lower bounds on Pc
(i) can be obtained by substituting Pc

(i)
j with its upper and

lower bounds in (2.37).

It can be readily observed from Proposition 2.19 and 2.20 that the bounds on per-
tier coverage probability (for j ∈ K) are simplified expressions due to the elimination of
one integration by bounding LIo(j,0)

(·). In the following Propositions, we present closed
form bounds on coverage probability under no shadowing for Thomas and Matérn cluster
processes. The tightness of the proposed bounds will be investigated in Section 2.5.2.

Proposition 2.21 (Bounds on Coverage: Thomas cluster process). When Φu
i is Thomas

cluster process, Pc(i) can be bounded by

λ0

M0

+
1

1 + τ

K∑

j=1

λj
Mj

≤ Pc
(i) ≤

K∑

j=0

λj
Mj

, (2.44)

whereMj = λ0 +
K∑
k=1

P̄ 2
jk(λk(G(α, τ) + 1) + λ′kH(α, τ)).

Proposition 2.22 (Bounds on Coverage: Matérn cluster process). When Φu
i is Matérn

cluster process, Pc(i) can be bounded by

P0 +
1

1 + τ

K∑

k=1

Pj ≤ Pc
(i) ≤ P0 +

K∑

k=1

Pj, (2.45)

where Pj = AjPc(i)
j which can be obtained by replacing Zj by π

K∑
k=1

P̄ 2
jk(λk(G(α, τ) + 1) +

λ′kH(α, τ)), λk (λk) by λk (λ′k) and putting V0 ≡ 1 in the expression of conditional association
probability when Φu

i is a Matérn cluster process ( (2.19)).

2.4.4 Asymptotic analysis of coverage
In this section, we examine the limiting behavior of the coverage probability expressions

with respect to the cluster size. As the cluster size increases, the typical user is pushed away
from the cluster center, which reduces its association probability with the BS located at its
cluster center. Also the interference and coverage provided by the BS at the cluster center
will be diminished due to reduced received signal power from this BS.

As the cluster size increases, let us assume that the distance of the typical user from
the cluster center Y0 is scaled to Z = ζY0, where ζ > 1 is the scaling factor. Then, the
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PDF of Z is fZ(z) = 1
ζ
fY0(z/ζ). The scaling of the distance from the cluster center and

increasing the cluster size are equivalent, for instance, when Φu
i is a Matérn cluster process,

0 < Y0 < Ri implies that 0 < Z < ζRi. When Φu
i is Thomas cluster process, since the users

have a Gaussian distribution around cluster center, 99.7% of the total users in cluster will
lie within a disc of radius 3 σi. Thus σi can be treated as the metric of cluster size and σi
scales with ζ.

In the following Lemma, we formally claim that, irrespective of the distribution of
Y0, if the size of the cluster is expanded, the total coverage probability Pc

(i) converges to
Pc

(PPP), i.e., the coverage probability obtained for a typical user under the assumption of
PPP distribution of users independent of the BS point processes, which is derived in [22].
Lemma 2.23 (Convergence). If distance of the a typical user and cluster center Y0 is scaled
by ζ (ζ > 1), then the following limit can be established:

lim
ζ→∞

Pc
(i) = Pc

(PPP) =
K∑

j=1

λj
K∑
k=1

P̄jk

(
λk(G(α, τ) + 1) + λ′kH(α, τ)

) . (2.46)

Proof. As will be evident from the proof, the limiting arguments as well as the final limit
remain the same irrespective of the value of random variable V0. Therefore, for notational
simplicity, we provide this proof for the no shadowing scenario, which is without loss of
generality. The Euclidean distance from the typical user to its cluster center is now Z = ζY0.
In the expression of Pc(i)

j in (2.39), we are particularly interested in inner integral which comes
from the Laplace transform of interference from the BS at 0th tier derived in Lemma 2.15.
From (2.32) with the substitution P̄jiwj = x and v0 = 1, we can write:

∞∫

x

1

1 + τ( z
x
)−α

fZ(z)

FZ(x)
dz = EZ

[
1

1 + τ
(
Z
x

)−α |Z > x

]
= EY0

[
1

1 + τ
(
ζY0

x

)−α |Y0 >
x

ζ

]
.

Hence,

lim
ζ→∞

∞∫

x
ζ

1

1 + τ
(
ζY0

x

)−α
fY0(y0)

F Y0(x
ζ
)
dy0 =

∞∫

0

fY0(y0)dy0 = 1.

Thus, as ζ →∞, the inner integral tends to 1. So,

lim
ζ→∞

Pc
(i)
j =

λj
K∑
k=1

P̄ 2
jk

(
λk(G(α, τ) + 1) + λ′kH(α, τ)

) .

Now we are left with the limit of the first term A0Pc
(i)
0 i.e., the contribution of the 0th tier

in Pc
(i) which will obviously go to zero as ζ →∞.
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2.4.5 Overall coverage probability
The results so far are concerned with the users belonging to Φu

i . Recall that in our
system model we considered that the users form a mixed point process consisting of Φu

i

(i ∈ B) and Φu(PPP). So the overall coverage probability will be a combination of all these
individual coverage probabilities Pc

(i) (i ∈ B) and also Pc
(PPP) corresponding to the users

in Φu(PPP), which are distributed independently of the BS locations. The overall user point

process can be expressed as Φu ≡ Φu(PPP) ∪
(⋃
i∈B

Φu
i

)
. The average number of points of Φu

in any given set A ⊂ R2 is given by

E(Φu(A)) = E(Φu(PPP)(A)) +
∑

i∈B

E(Φu
i (A)),

where E(Φu(PPP)(A)) = λ(PPP)A,E(Φu
i (A)) = NiλiA. To avoid notational complication, we

use the symbol Φ to denote a point process as well as the associated counting measure. Since
each point has an equal chance to be selected as location of the typical user, the probability
that a randomly chosen user from Φu belongs to Φu(PPP) (Φu

i ), denoted by p0 (pi) respectively,
is

p0 =
λ(PPP)

λ(PPP) +
∑

j∈BNjλj
and pi =

Niλi
λ(PPP) +

∑
j∈BNjλj

, (2.47)

where Ni is the average number of users per cluster of Φu
i (i ∈ B). Now, using these proba-

bilities p0 and pi, the overall coverage probability is formally stated in the next Theorem.

Theorem 2.24 (Overall Coverage Probability). Overall coverage probability with respect to
any randomly chosen user in a K-tier HetNet with mixed user distribution is:

Pc = p0Pc
(PPP) +

∑

i∈B

piPc
(i), (2.48)

where Pc
(PPP) and Pc

(i) are given by (2.46) and (2.28), respectively.

2.5 Numerical results and discussions
2.5.1 Validation of results

In this section, the analytical results derived so far are validated and key insights for
the new HetNet system model with users clustered around BSs are provided. For the sake
of concreteness, we restrict our simulation to two tiers: one macrocell tier (Φ(BS,o)

1 ) with
density λ1 with all open access BSs, and one small cell tier (Φ(BS)

2 ) with a mix of open
and closed access BSs. For Φ

(BS)
2 , the open and closed access BS densities are λ2 and λ′2,

respectively. We choose λ2 = λ′2 = 100λ1 = 100 BSs per π(500)2 m2. We assume the
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Figure 2.2: Comparison of coverage probabilities with cluster size for various shadowing
environments. The baseline case when the user distribution is a PPP is also included. The
lines and markers correspond to the analytical and simulation results, respectively.

transmit powers are related by P1 = 103P2. The user process is considered to be Φu
2 only,

i.e., a PCP around Φ
(BS)
2 . For every realization, a BS in the ith tier is randomly selected and

location of a typical user is generated according to the density function of (i) Thomas cluster
process ((2.11)), and (ii) Matérn cluster process ((2.12)). For shadowing, we have chosen
log-normal distribution parameters as µk = 0, ηk = 8 dB, 4 dB and 0 dB (no shadowing)
for all k = 0, 1, 2. In Fig. 2.2, the coverage probability (Pc, equivalently Pc

(2)) is plotted
for different values of SIR threshold τ and cluster size (i.e. different σ2-s for Thomas and
R2-s for Matérn cluster processes). It can be observed that the analytically obtained results
exactly match the simulation results. For comparison, Pc(PPP), i.e., the coverage probability
assuming homogeneity of users (i.e., independent PPP assumption) is also plotted. The plots
clearly indicate that under clustering, Pc is significantly higher than Pc

(PPP) and increases
for denser clusters. Also the convergence towards Pc(PPP) is evident as cluster size increases.
In Fig. 8.2, the association probabilities are plotted for different cluster size with ηk = 4 dB.
The figure clearly illustrates that a user is more likely to be served by its cluster center if the
distribution is more “dense” around the cluster center. As the cluster expands, association
probability to the BS at cluster center (equivalently the 0th tier) decreases whereas the
association probabilities to the other open access tiers increase.

2.5.2 Tightness of the bounds
In Proposition 2.19, we derived upper and lower bounds on Pc

(i). We found that for no
shadowing, these bounds reduce to closed form expression when Φu

i is Thomas or Matérn
cluster process (Propositions 2.21 and 2.22). In Fig. 2.4, we plot these upper and lower
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Figure 2.3: Comparison of the association probabilities to the two tiers and the cluster
center.
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Figure 2.4: Inspection of the proposed closed form bound with variation of cluster size for
constant SIR threshold, τ = 0 dB.

38



2.6. Summary

bounds on Pc. Recall that the lower bound was obtained by placing the BS of the cluster-
center (in the representative cluster) on the boundary of the exclusion disc when the typical
user connects to other BSs and the upper bound was found by simply ignoring the interference
from this BS (see Corollary 2.16 for details). We observe that the lower bound becomes loose
as the cluster size increases and for large user clusters, Pc(PPP) becomes tighter lower bound.
This is because the interference from the cluster center is significantly overestimated by
placing the BS of the cluster center at the boundary of the exclusion zone. The upper bound
remains tight for the entire range of cluster sizes. This can be explained by looking at the
cases of small and large clusters separately. For small clusters, the typical user will likely
connect to the BS at its cluster center most of the time and hence the interference term
in question (Laplace transform of interference from the cluster center; see Corollary 2.16)
will not even appear in the coverage probability expression. On the other hand, for large
clusters, the interference from the BS at the cluster center of the representative cluster will
be negligible compared to the other interference terms due to large distance between the
typical user and this BS.

2.5.3 Power control of small cell BSs
If Φu is a PPP independent to BS locations, then Pc

(PPP) is independent of the BS
trasmission power and it predicts that no further gain in coverage can be achieved by in-
creasing P2/P1 (for interference-limited scenario under the assumption that the target SIR is
the same for all the tiers, as is the case in this chapter) [21]. However, referring to Figs. 2.5a
and 2.5b, it is evident that Pc improves significantly with P2/P1. In the figures, we can
identify three regions of Pc: (i) For lower value of P2/P1, Pc is close to Pc

(PPP), (ii) Pc is
enhanced as P2/P1 increases since the user is likely to be served by the cluster center, (iii)
if P2/P1 is further increased, Pc is saturated since association probability to other BSs will
diminish. Again, the gain of Pc is stronger for denser clusters. Thus, coverage gain can be
harnessed by increasing the transmit powers of small cell BSs in a certain range.

2.6 Summary
While random spatial models have been used successfully to study various aspects of

HetNets in the past few years, quite remarkably all these works assume the BS and user
distributions to be independent. In particular, the analysis is usually performed for a typical
user whose location is sampled independently of the BS locations. This is clearly not the
case in current capacity-driven user-centric deployments where the BSs are deployed in the
areas of high user density. This chapter presented a comprehensive analysis of such user-
centric HetNet deployments in which the user and BS locations are naturally correlated.
In particular, modeling the user locations as a general Poisson cluster process, with BSs
being the cluster centers, we have developed new tools leading to tractable results for the
downlink coverage probability of a typical user. We have specialized the results for the case of
Thomas cluster process in which the users are Gaussian distributed around BSs, and Matérn
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Figure 2.5: Effect of increasing small cell power on coverage.

cluster process where the users are uniformly distributed inside a disc centered at the BS.
We have also examined the bounds and the limiting nature of the coverage probability as
cluster size goes to infinity. We have derived the overall coverage probability for a mixed
user distribution containing users uniformly distributed and clustered around small cell BSs.
Overall, this work opens up a new dimension in the HetNet analysis by providing tools for
the analysis of non-uniform user distributions correlated to the BS locations.
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3

General HetNet Model: Part-I

3.1 Introduction
In order to handle the exponential growth of mobile data traffic, macrocellular networks

of yesteryears have gradually evolved into more denser heterogeneous cellular networks in
which several types of low power BSs (called small cells) coexist with macrocells. While
macro BSs (MBSs) were deployed fairly uniformly to provide a ubiquitous coverage blanket,
the small cell BSs (SBSs) are deployed somewhat organically to complement capacity of the
cellular networks (primarily at user hotspots) or to patch their coverage dead-zones. This
naturally couples the locations of the SBSs with those of the users, as a result of which we
now need to consider plethora of deployment scenarios in the system design phase as opposed
to only a few in the macro-only networks of the past. While the simulation models considered
by 3GPP are cognizant of this evolution and consider several different configurations of user
and SBS locations [2, 3], the stochastic geometry-based analyses of HetNets still rely on
the classical PPP-based K-tier HetNet model [21, 34], which is not rich enough to capture
aforementioned coupling. In this chapter, we show that this ever-increasing gap between
the PPP-based HetNet model and the real-word deployments can be reduced by modeling
a fraction of users and an arbitrary number of BS tiers using PCPs. The 3GPP-based
spatial models of HetNets were already discussed in Chapter 1. We discuss the stochastic
geometry-based HetNet models next.

3.1.1 Stochastic geometry-based approaches
In parallel to the realistic simulation models used by 3GPP, analytical HetNet models

with foundations in stochastic geometry have gained prominence in the last few years [23,
31–33]. The main idea here is to endow the locations of the BSs and users with distribu-
tions and then use tools from stochastic geometry to derive easy-to-compute expressions
for key performance metrics, such as coverage and rate1. In order to maintain tractability,
the locations of the users and different types of BSs are usually modeled by independent
homogeneous PPPs. We will henceforth refer to homogeneous PPP as a PPP unless stated
otherwise. This model, usually referred to as a K-tier HetNet model, was first introduced
in [20,21] and generalized in several important ways in [22,26,35,36]. Reviewing the rich and
diverse collection of the followup works is outside the scope of this paper. Interested readers
1 A careful reader will note that 3GPP models also endow the locations of users and SBSs with distributions,
which technically makes them stochastic models as well.
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are advised to refer to extensive surveys in [23, 31–33]. Since the fundamental assumption
in this PPP-based K-tier HetNet model is the mutual independence of all the BS and user
locations, it is not rich enough to capture spatial coupling that exists in HetNets. As a result,
there have been many attempts in the recent past to use more sophisticated point processes
to model different elements of HetNets. However, as will be evident from the discussion
below, most of the efforts have been focused at modeling intra- and inter-tier repulsion that
exists in the BS locations due to cell planning. There is relatively less attention given to
modeling user-BS attraction, which is the main focus of this paper.

1) Intra-tier coupling. One of the conspicuous shortcomings of the PPP model is its
inability to model minimum inter-site distance that exists in cellular networks due to cell
site planning. This motivated several works in which the BS locations were modeled by
repulsive point processes, such as Matérn hard-core process [63], Gauss-Poisson process [64],
Ginibre point process [65], and determinantal point process [66]. For completeness, it should
be noted that in high shadowing regime, the network topology does appear Poissonian to
the receiver even if it follows a repulsive process [9]. This justifies the use of a PPP for
modeling BS locations if the propagation channels exhibit sufficiently strong shadowing that
is independent across links [9, 67].

2) Inter-tier coupling. Another conspicuous shortcoming of the K-tier HetNet model
is the assumption of independence in the locations of the BSs across tiers. While this
independence can be justified to some extent between MBSs and user-deployed SBSs (because
users do not usually know the MBS topology), it is a bit more questionable for the SBSs
deployed by the operators who will tend to concentrate them towards the cell edge away
from the MBSs. This has motivated the use of Poisson hole process (PHP) [68] for modeling
HetNets [68–70]. In this model, the MBSs are first modeled by a PPP. Inhibition zone of
a fixed radius is then created around each MBS. The SBS locations are then modeled by a
PPP outside these inhibition zones. This introduces repulsion between the locations of the
MBSs and SBSs.

3) User-SBS coupling. As discussed already, coupling in the locations of the users and
SBSs originate from the deployment of SBSs in the user hotspots. This coupling is at the
core of several important user and SBS configurations considered in the 3GPP simulation
models for HetNets [1–3]. Some relevant configurations motivated by this coupling are sum-
marized in Table 3.1. Note that while the inter- and intra-tier couplings discussed above
were modeled using repulsive point processes, accurate modeling of user-SBS coupling re-
quires the use of point processes that exhibit inter-point attraction. Despite the obvious
relevance of this coupling in HetNets, until recently this was almost completely ignored in
stochastic geometry-based HetNet models. One exception is [50], which proposed a condi-
tional thinning-based method of biasing the location of the typical user towards the BSs,
thus inducing coupling in the BS and user locations. While this provided a good enough first
order solution, it lacks generality and is not easily extendible to HetNets. The first work to
properly incorporate this user-SBS coupling in a K-tier HetNet model is [60, 71], in which
the users were modeled as a PCP (around SBS locations) instead of an independent PPP
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Table 3.1: Relevant user and SBS configurations used in 3GPP HetNet models (synthesized
from the configurations discussed in [1, Table A.2.1.1.2-4], [2, 3]).

Configuration User distribution
within a macrocell

SBS distribution
within a macrocell

Comments

1 Uniform Uncorrelated Captured by Model 1
2 Clustered Correlated, hotspot center Capacity centric deployment

Captured by Model 2
3 Clustered Correlated, small cell cluster Deployed at user hotspots

Cluster size may vary from small
to large, Captured by Model 3

4 Uniform Clustered Applies for pedestrians
Captured by Model 4

as was the case in the classical K-tier model. There are some other recent works that use
PCPs to model SBS and/or user locations. Instead of simply listing them here, we discuss
them next in the context of four 3GPP-inspired generative models, which collectively model
several key user and SBS configurations of interest in HetNets.

3.1.2 3GPP-inspired generative models using PPP and PCP
As discussed above already in Section 1.3, we need to incorporate inter-point interaction

in the HetNet models to capture user-SBS coupling accurately. A simple way of achieving
that, which is also quite consistent with the 3GPP configurations listed in Table 3.1, is to
use PCPs. By combining PCP with a PPP, we can create generative models that are rich
enough to model different HetNet configurations of Table 3.1. We discuss these generative
models next.

• Model 1: SBS PPP, user PPP. This is the PPP-based K-tier baseline model most
commonly used in HetNet literature and is in direct agreement with the 3GPP models
with uniform user and uncorrelated SBS distribution (configuration 1 in Table 3.1).

• Model 2: SBS PPP, user PCP. Proposed in our recent work [60, 71], this model can
accurately characterize clustered users and uncorrelated SBSs. In particular, we model
the clustered user and SBS locations jointly by defining PCP of users around PPP
distributed SBSs. This captures the coupling between user and SBS locations. More
precisely, this model closely resemblances the 3GPP configuration of single SBS per
user hotspot in a HetNet, which is listed as configuration 2 in Table 3.1.

• Model 3: SBS PCP, user PCP. The SBS locations exhibit inter-point attraction (and
coupling with user locations) when multiple SBSs are deployed in each user hotspot.
For modeling such scenarios, two PCPs with the same parent PPP but independent
and identically distributed (i.i.d.) offspring point processes can be used to model the

43



Chapter 3. General HetNet Model: Part-I

user and SBS locations. Coupling is modeled by having the same parent PPP for
both the PCPs. We proposed and analyzed this model for HetNets in [72] (models
configuration 3 listed in Table 3.1).

• Model 4: SBS PCP, user PPP. This scenario can occur in conjunction with the previous
one since some of the users may not be a part of the user clusters but are still served by
the clustered SBSs. PPP is a good choice for modeling user locations in this case [44,45].
This corresponds to configuration 4 in Table 3.1.

These generative models are illustrated in Fig. 3.1. Clearly, they collectively encompass a
rich set of 3GPP HetNet configurations. In this chapter, we unify these four models and
develop a general analytical approach for the derivation of downlink coverage probability.
Unlike prior works on PCP-based HetNet models that focused exclusively onmax-power based
association policy, we will consider max-SIR cell association, which will require a completely
new formalism compared to these existing works. It is worth noting that this work is the
first to consider max-SIR based association in PCP enhanced HetNets. More details about
the contributions are provided next.

3.1.3 Contributions
A unified framework with PCP and PPP modeled BSs and users

Inspired by the user and SBS configurations considered in the 3GPP simulation models
for HetNets (summarized in Table 3.1), we propose a unified K-tier HetNet model in which
an arbitrary number of BS tiers and a fraction of users is modeled by PCPs. The PCP
assumption for the BS tier incorporates spatial coupling among the BS locations. On the
other hand, the coupling between user and BS locations is captured when the users are also
modeled as a PCP with each cluster having either (1) a BS at its cluster center, or (2) a
BS cluster with same cluster center as that of the user cluster. As will be evident soon, the
four generative models discussed above (and the four user and SBS configurations listed in
Table 3.1) can all be treated as special cases of this general setup.

Sum-product functional and coverage probability analysis

We derive coverage probability (or equivalently SIR distribution) of a typical user for
the proposed unified HetNet model under the max-SIR cell association. We demonstrate
that the coverage probability for this setup can be expressed as a summation of a functional
over the BS point processes which we define as sum-product functional. As a part of the
analysis, we characterize this functional for PPP, PCP and its associated offspring point
process, thus leading to new results from stochastic geometry perspective that may find
broader applications in the field. After deriving all results in terms of general PCP, we
specialize them to two cases: when all the clustered BS tiers and users are modeled as (i)
Matérn cluster process (MCP), and (ii) Thomas cluster process (TCP).
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Limiting behavior

We also study the limiting behavior of PCP in the context of this model. In particular,
we show that when the cluster size tends to infinity: (i) the PCP weakly converges to
a PPP, (ii) the limiting PPP and the parent PPP become independent point processes.
Although, to the best of our knowledge, these limiting results have not been reported in the
communications literature (due to limited application of PCPs to communication network
modeling), it would not be prudent to claim that they are not known/available in some form
in the broader stochastic geometry literature. Regardless, as a consequence of this limiting
result, we are able to formally demonstrate that the coverage probability obtained under
this general framework converges to the well-known closed-form coverage probability result
of [21] obtained for the baseline PPP-based HetNet model where all the BS tiers and users
are modeled as independent PPPs.

One of the key take-aways of this study is the fact that the performance trends in
HetNets strongly depend on the network topology and are highly impacted by the spatial
coupling between the user and BS locations. While the PPP-based baseline HetNet model
provided useful initial design guidelines, it is perhaps time to focus on more realistic models
that are in better agreement with the models used in practice, such as the ones in the 3GPP
simulation models. Our numerical studies demonstrate several fundamental differences in
the coverage probability trends in Models 1-4 when the parameters of the BS and user point
processes are changed.

3.2 System model
Before we introduce the proposed PCP-based system model for K-tier HetNet, we pro-

vide a formal introduction to PCP next.

Definition 3.1 (PCP). A PCP Ψ(λp, f, pn) can be uniquely defined as:

Ψ =
⋃

z∈Φp

z + Bz, (3.1)

where Φp is the parent PPP of intensity λp and Bz denotes the offspring point process
corresponding to a cluster center z ∈ Φp where {s ∈ Bz} is an i.i.d. sequence of random
vectors with arbitrary probability density function (PDF) f(s). The number of points in Bz

is denoted by N , where N ∼ pn (n ∈ N).

PCP can be viewed as a collection of offspring process Bz translated by z for each z ∈ Φp.
Then the sequence of points {t} ⊆ z+Bz is conditionally i.i.d. with PDF f̄(t|z) = f(t− z).
A special class of PCP is known as Neyman-Scott process in which N ∼ Poisson(m̄).
Throughout this chapter, we will denote the Neyman-Scott process by Ψ(λp, f, m̄) and will
refer to it as a PCP unless stated otherwise.
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(a) Model 1: SBS PPP, user PPP (baseline) (b) Model 2: SBS PPP, user PCP

(c) Model 3: SBS PCP, user PCP (d) Model 4: SBS PCP, user PPP

Figure 3.1: Illustration of the four generative HetNet models developed by combining PPP
and PCP. The black square, black dot and red dot refer to the MBS, SBS, and users,
respectively.
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3.2.1 K-tier HetNet model
We assume a K-tier HetNet consisting of K different types of BSs distributed as PPP

or PCP. Let K1 and K2 denote the index sets of the BS tiers being modeled as PPP and
PCP, respectively, with |K1 ∪ K2| = K (K1 ∩ K2 = ∅). We denote the point process of
the kth BS tier as Φk, where Φk is either a PPP with intensity λk (∀k ∈ K1) or a PCP i.e.
Φk(λpk , fk, m̄k) (∀k ∈ K2). We assume that each BS of Φk transmits at constant power Pk.
Define Φu as the user point process. Contrary to the common practice in the literature, Φu

is not necessarily a PPP independent of the BS locations, rather this scenario will appear
as a special case in our analysis. In particular, we consider three different configurations for
users:

• Case 1 (uniform users): Φu is a PPP. This corresponds to Models 1 and 4 from the
previous Section.

• Case 2 (clustered users): Φu(λq, fq, m̄q) is a PCP with parent PPP Φq (q ∈ K1), which
corresponds to Model 2 (single SBS deployed in a user hotspot).

• Case 3 (clustered users): Φu(λpq , fq, m̄q) is a PCP having same parent PPP as that of
Φq (q ∈ K2), which corresponds to Model 3 (multiple SBSs deployed at a user hotspot).

We perform our analysis for a typical user which corresponds to a point selected uniformly
at random from Φu. Since both PPP and PCP are stationary, the typical user is assumed
to be located at the origin without loss of generality. In case 2 and case 3, the locations
of the users and BSs are coupled. Hence, when we select a typical user, we also implicitly
select the cluster to which it belongs. For case 2, let z0 ∈ Φq (q ∈ K1) be the location of
the BS at the cluster center of the typical user. For case 3, let us define the representative
BS cluster Bz0

q ⊂ Φq (q ∈ K2) having the cluster center at z0 which is also the cluster center
of the typical user located at origin. Having defined all three possible configurations/cases
of Φu, we define a set

Φ0 =





∅; case 1,
{z0}; case 2,
z0 + Bz0

q ; case 3.
(3.2)

This set can be interpreted as the locations of the BSs whose locations are coupled with
that of the typical user (alternatively the BSs that lie in the same cluster as the typical
user). For the sake of analysis, we remove Φ0 from Φq and treat it as a separate BS tier
(call it the 0th tier). Thus, for case 2, we remove singleton {z0} from Φq(q ∈ K1). In
case 3, we remove finite process z0 + Bz0

q , which is a representative cluster of BSs with
properties (fq, m̄q) being inherited from Φq (q ∈ K2). According to Slivnyak’s theorem [13],
this removal of a point (case 2) or a representative cluster (case 3) does not change the
distribution of Φq, i.e., Φq

d
= Φq \ Φ0, where ‘d=’ denotes equality in distribution. Note that
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since Φ0 is constructed from Φq (q ∈ K1 ∪ K2), the transmit power of the BS(s) in Φ0 is
P0 ≡ Pq. Hence, the BS point process is a superposition of independent point processes
defined as: Φ = ∪k1∈K1Φk1 ∪k2∈K2 Φk2 ∪ Φ0, and the corresponding index set is enriched as:
K = K1 ∪ K2 ∪ {0}. For the simplicity of exposition, the thermal noise is assumed to be
negligible compared to the interference power. Assuming the serving BS is located at x ∈ Φk,
SIR(x) is defined as:

SIR(x) =
Pkhx‖x‖−α

I(Φk \ {x}) +
∑

j∈K\{k}
I(Φj)

, (3.3)

where I(Φi) =
∑

y∈Φi
Pihy‖y‖−α is the aggregate interference from Φi (i ∈ K). For the

channel model, we assume that the signal from a BS at y ∈ R2 undergoes independent
Rayleigh fading, more precisely {hy} is an i.i.d. sequence of random variables, with hy ∼
exp(1), and α > 2 is the path-loss exponent. Assuming βk is the SIR-threshold defined for
Φk for successful connection and the user connects to the BS that provides maximum SIR,
coverage probability is defined as:

Pc = P
[ ⋃

k∈K

⋃

x∈Φk

{SIR(x) > βk}
]
. (3.4)

Note that β0 ≡ βq for case 2 and case 3, as discussed above already. The main goal of
this chapter is to provide exact characterization of Pc for this general model under max-
SIR connectivity. Note that there is another popular user association policy known as the
max-power connectivity, where the user connects to the BS which provides the maximum
received power averaged over fading. However, the characterization of coverage probability
under max-power connectivity requires completely different formalism [32] and the necessary
analytical tools for the analyses of the four Models have been developed in [22,71–74].

3.3 Point Process functionals
This is the first main technical section of this chapter, where we characterize the sum-

product functional and probability generating functional (PGFL) of a point process Ψ with
respect to both its original and reduced Palm distributions, where Ψ can be either a PPP,
PCP or its associated offspring process. While PGFLs of point processes are widely-known
functionals in stochastic geometry [13], sum-product functionals are not as well-studied.
Perhaps the most relevant prior work on sum-product functionals is [75] but it was limited
to PPPs. These point process functionals will be used in the analysis of coverage proba-
bility under max-SIR connectivity in the next Section. We begin by providing their formal
definitions.

Definition 3.2 (Sum-product functional). Sum-product functional of a point process Ψ is
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defined in this chapter as:

E


∑

x∈Ψ

g(x)
∏

y∈Ψ\{x}

v(x,y)


 , (3.5)

where g(x) : R2 7→ [0, 1] and v(x,y) : [R2 × R2] 7→ [0, 1] are measurable.

Note that our definition of the sum-product functional is slightly different from the way
it was defined (for PPPs) in [75]. In (3.5), while taking product over Ψ, we exclude the point
x appearing in the outer summation. It will be evident later that this invokes reduced Palm
measures of Ψ. Also note that the above functional form can be treated as a special case of
the functional that appears in the definition of Campbell-Mecke theorem [13]. Next we define
the PGFLs of a point process with respect to its original and reduced Palm distribution.

Definition 3.3 (PGFL). The PGFL of a point process Ψ evaluated at v(x,y) is defined as:

G(v(x,y)) = E

[∏

y∈Ψ

v(x,y)

]
, (3.6)

where v(x,y) : [R2 × R2] 7→ [0, 1] is measurable. The PGFL of Ψ under the condition
of removing a point of Ψ at x or alternatively the PGFL of Ψ under its reduced Palm
distribution is defined as:

G̃(v(x,y)) = E!
x

[∏

y∈Ψ

v(x,y)

]
= E


 ∏

y∈Ψ\{x}

v(x,y)


 . (3.7)

Although it is natural to define PGFL of a point process at some v′(y) where v′ : R2 7→
[0, 1] is measurable, we define PGFL at v(x,y), where ‘x’ appears as a dummy variable, to
be consistent with the notation used throughout this chapter.

3.3.1 Sum-product functionals
In this Subsection, we characterize the sum-product functionals of different point pro-

cesses that appear in the expression for coverage probability of a typical user in the next
Section. The sum-product functional when Ψ is a PPP is presented in the next Lemma.

Lemma 3.4. The sum-product functional of Ψ when Ψ is a PPP of intensity λ is:

E


∑

x∈Ψ

g(x)
∏

y∈Ψ\{x}

v(x,y)


 = λ

∫

R2

g(x)G̃(v(x,y))dx, (3.8)

where G̃(v(x,y)) is the PGFL of Ψ with respect to its reduced Palm distribution and G̃(v(x,y)) =
G(v(x,y)).
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Proof. We can directly apply Campbell-Mecke Theorem [13] to evaluate (3.5) as:

E
[∑

x∈Ψ

g(x)
∏

y∈Ψ\{x}

v(x,y)

]
=

∫

R2

g(x)E!
x

∏

y∈Ψ

v(x,y)Λ(dx) =

∫

R2

g(x)G̃(v(x,y))Λ(dx),

where Λ(·) is the intensity measure of Ψ and G̃(·) denotes the PGFL of Ψ under its re-
duced Palm distribution. When Ψ is homogeneous PPP, Λ(dx) = λ dx and G̃(v(x,y)) =
G(v(x,y)) = E

∏
y∈Ψ

v(x,y), by Slivnyak’s theorem [13].

Sum-product functional of Ψ when Ψ is a PCP requires more careful treatment since
selecting a point from x ∈ Ψ implies selecting a tuple (x, z), where z is the cluster center of
x. Alternatively, we can assign a two-dimensional mark z to each point x ∈ Ψ such that z is
the cluster center of x. Then (x, z) is a point from the marked point process Ψ̂ ⊂ R2 × R2.
It should be noted that Ψ̂ is simply an alternate representation of Ψ, which will be useful in
some proofs in this Section. Taking A,B ⊂ R2, its intensity measure can be expressed as:

Λ(A,B) = E
[ ∑

(x,z)∈Ψ̂

1
(
x ∈ A, z ∈ B

)] (a)
= E

[ ∑

z∈Φp∩B

m̄

∫

x∈A

f̄(x|z)dx

]

= m̄λp

∫∫

z∈B,x∈A

f̄(x|z)dx dz, (3.9)

where in step (a), the expression under summation is the intensity of z+Bz, i.e., the offspring
process with cluster center at z. The last step follows from Campbell’s theorem [13]. Hence,

Λ(dx, dz) = λpm̄f̄(x|z) dz dx. (3.10)

We now evaluate the sum-product functional of PCP in the next Lemma.

Lemma 3.5. The sum-product functional of Ψ when Ψ is a PCP can be expressed as follows:

E


∑

x∈Ψ

g(x)
∏

y∈Ψ\{x}

v(x,y)


 =

∫∫

R2×R2

g(x)G̃(v(x,y)|z)Λ(dx, dz), (3.11)

where
G̃(v(x,y)|z) = G(v(x,y))G̃c(v(x,y)|z) (3.12)

denotes the PGFL of Ψ when a point x ∈ Ψ with cluster center at z is removed from Ψ. G(·)
is the PGFL of Ψ and G̃c(·|z) is the PGFL of z + Bz, which is a cluster of Ψ centered at z
under its reduced Palm distribution.
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Proof. Starting from (3.5), we apply Campbell-Mecke theorem on Ψ̂ as follows:

E
[ ∑

(x,z)∈Ψ̂

g(x)
∏

(y,z′)∈Ψ̂\(x,z)

v(x,y)

]
=

∫∫

R2×R2

E!
(x,z)

[
g(x)

∏

(y,z′)∈Ψ̂

v(x,y)

]
Λ(dx, dz).

The Palm expectation in the last step can be simplified as:

E!
(x,z)

[
g(x)

∏

(y,z′)∈Ψ̂

v(x,y)

]

= g(x)E
[ ∏

y∈Ψ\(z+Bzk)

v(x,y)
∏

y∈(z+Bzk)\{x}

v(x,y)

]

(a)
= g(x)E

[ ∏

y∈Ψ\(z+Bz)

v(x,y)

]
E
[ ∏

y∈(z+Bz)\{x}

v(x,y)

]

(b)
= g(x)E

[∏

y∈Ψ

v(x,y)

]
E!

x

[ ∏

y∈(z+Bz)

v(x,y)

]
,

where (a) follows from the independence of the processes z + Bz and Ψ \ (z + Bz) and (b)

follows from Slivnyak’s theorem for PCP, i.e. Ψ
d
= Ψ \ (z + Bz) [76]. Substituting the

PGFLs as E
∏
y∈Ψ

v(x,y) = G(v(x,y)), and E!
x

∏
y∈z+Bz

v(x,y) = G̃c(v(x,y)|z), we get the final

result.

The similar steps for the evaluation of the sum-product functional can not be followed
when Ψ is a finite point process, specifically, Ψ = z + Bz, the cluster of a randomly chosen
point x ∈ Ψ centered at z.

Lemma 3.6. The sum-product functional of Ψ when Ψ = z + Bz, i.e., the offspring point
process of a PCP centered at z can be expressed as follows:

E


∑

x∈Ψ

g(x)
∏

y∈Ψ\{x}

v(x,y)


 =

∫

R2

g(x) exp
(
− m̄

∫

R2

(1− v(x,y))f̄(y|z)dy
)
×

(
m̄

∫

R2

v(x,y)f̄(y|z)dy + 1
)
f̄(x|z)dx. (3.13)

Proof. Note that Ψ is conditioned to have at least one point (the one located at x) and the
number of points in Ψ follows a weighted distribution, Ñ ∼ npn

m̄
(n ∈ Z+) [13]. Now, starting
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from (3.5),
∫

N

∑

x∈ψ

g(x)
∏

y∈ψ\{x}

v(x,y)P (dψ)

(a)
=

∞∑

n=1

∫

Nn

∑

x∈ψ

g(x)
∏

y∈ψ\{x}

v(x,y)P (dψ)

=
∞∑

n=1

∫
· · ·
∫

[x1,...,xn]∈R2n

n∑

i=1

g(xi)

[ n∏

j=1,
j 6=i

v(xi,xj)h(xj|z)dxj

]
×

f̄(xi|z)dxi
npn
m̄

=
∞∑

n=1

n

∫

R2

g(x)



∫

R2

v(x,y)f̄(y|z)dy



n−1

f̄(x|z)dx n
pn
m̄
, (3.14)

where N denotes the space of locally finite and simple point sequences in R2. In (a), N is
partitioned into {Nn : n ≥ 1} where Nn is the collection of point sequences having n points
and ψ denotes a realization of (z + Bz). Under the condition of removing a point x from
(z + Bz), this point process will have at least one point. Hence, the number of points in
(z + Bz) will follow the weighted distribution: Ñ ∼ npn

m̄
(n ∈ Z+). The final expression is

obtained by substituting pn(∀ n ∈ N) by the probability mass function (PMF) of Poisson
distribution followed by basic algebraic manipulations.

3.3.2 Probability generating functional
In this Section, we evaluate the PGFLs of different point processes that appeared in the

expressions of the sum-product functionals in the previous Section. While the PGFLs of the
PPP and PCP are known [54], we list them in the next Lemma for completeness.

Lemma 3.7. The PGFL of Ψ when Ψ is a PPP of intensity λ is given by:

G(v(x,y)) = exp

(
−λ
∫

R2

(1− v(x,y))dy

)
. (3.15)

When Ψ is a PCP, the PGFL of Ψ (λp, f, m̄) is given by:

G(v(x,y)) = exp

(
− λp

∫

R2

(
1− exp

(
− m̄

(
1−

∫

R2

v(x,y)f̄(y|z)dy
)))

dz

)
. (3.16)

Proof. Please refer to [54, Theorem 4.9, Corollary 4.13].

We have pointed out in Lemma 3.4 that the PGFLs with respect to the original and
reduced Palm distributions are the same when Ψ is a PPP. However, this is not true for
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PCP. It was shown in Lemma 3.5 that when Ψ is a PCP, the PGFL of Ψ (λp, f, m̄) with
respect to its reduced Palm distribution is given by the product of its PGFL G(v(x,y)) and
G̃c(v(x,y)|z), where G̃c(v(x,y)|z) is the PGFL of z + Bz with respect to its reduced Palm
distribution. We characterize Gc(v(x,y)|z) and G̃c(v(x,y)|z) in the next Lemma.

Lemma 3.8. The PGFL of Ψ when Ψ = z + Bz conditioned on the removal of a point at x
is:

G̃c(v(x,y)|z) = Gc(v(x,y)|z), (3.17)

where Gc(v(x,y)) is the PGFL of z + Bz which is given by:

Gc(v(x,y)|z) = exp

(
− m̄

(
1−

∫

R2

v(x,y)f̄(y|z)dy

))
. (3.18)

Proof. The PGFL of Ψ with respect to its reduced Palm distribution can be expressed as:

G̃c(v(x,y)|z) =

∫

N

∏

y∈ψ

v(x,y)P !
x(dψ)

(a)
=

∞∑

n=1

∫

Nn

n∏

y∈ψ\{x}

v(x,y)P (dψ)

=
∞∑

n=1

∫
· · ·
∫

[y1,...,yn−1]∈R2n−2

n−1∏

i=1

v(x,yi)f̄(yi|z)dyi
npn
m̄

=
∞∑

n=1



∫

R2

v(x,y)f̄(y|z)dy



n−1

n
pn
m̄
, (3.19)

where (a) follows on similar lines of step (a) in the proof of Lemma 3.6. This means we have
partitioned N in the same way as we did in the proof of Lemma 3.6. Since we condition
on a point x of Ψ to be removed, it implies that Ψ will have at least one point. Hence, the
number of points in Ψ will follow the weighted distribution: Ñ ∼ npn

m̄
(as was the case in

Lemma 3.6). Similarly, the PGFL of Ψ = z+Bz with respect to its original distribution can
be obtained by

Gc(v(x,y)|z) =
∞∑

n=0



∫

R2

v(x,y)f̄(y|z)dy



n

pn. (3.20)

Substituting pn by the PMF of Poisson distribution, we get the desired expression.
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Remark 3.9. We observe that the PGFLs of the offspring point process associated with the
PCP are the same under the original and the reduced Palm distribution. From the proof
of Lemma 3.8, it is evident that this result is a consequence of the fact that the number of
points in the offspring point process is Poisson [13, Section 5.3].

Note that if the number of offspring points are not Poisson distributed, G̃c(v(x)) and
Gc(v(x)) can be explicitly computed using (3.19) and (3.20), respectively.

3.4 Coverage probability analysis
This is the second main technical section of this chapter, where we evaluate the coverage

probability of a typical user in the unified HetNet model which was defined in (3.4). Using the
results for the point process functionals derived in the previous Section, we first characterize
the coverage probability when clustered nodes (users and/or BSs) are modeled as Neyman-
Scott cluster process, and then specialize our result to the case when clustered users and/or
BSs are distributed according to MCPs and TCPs.

3.4.1 Neyman-Scott cluster process
We now provide our main result of downlink coverage probability of a typical user for

the general K-tier HetNet setup defined in Section 3.2.1 in the following Theorem.

Theorem 3.10. Assuming that the typical user connects to the BS providing maximum SIR

and βk > 1, ∀ k ∈ K, coverage probability can be expressed as follows:

Pc =
∑

k∈K

Pck =
∑

k∈K

E
[ ∑

x∈Φk

∏

j∈K\{k}

Gj(vk,j(x,y))
∏

y∈Φk\{x}

vk,k(x,y)

]
(3.21)

with

vi,j(x,y) =
1

1 + βi
Pj
Pi

(‖x‖
‖y‖

)α , (3.22)

where Pck denotes per-tier coverage probability, more precisely, the joint probability of the
event that the serving BS belongs to Φk and the typical user is under coverage, and Gj(·),∀j ∈
K1 ∪ K2 is given by Lemma 3.7.

Proof. Under the assumption that βk > 1, ∀ k ∈ K, there will be at most one BS in Φ
satisfying the condition for coverage [21]. Continuing from (3.4),

Pc =
∑

k∈K

E
[ ∑

x∈Φk

1

(
Pkhx‖x‖−α

I(Φk \ {x}) +
∑

j∈K\{k}
I(Φj)

> βk

)]
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=
∑

k∈K

E
[ ∑

x∈Φk

P
(
hx >

βk
Pk

(
I(Φk \ {x}) +

∑

j∈K\{k}

I(Φj)
)
‖x‖α

)] (a)
=
∑

k∈K

E
[ ∑

x∈Φk

exp
(
− βk
Pk
×

(
I(Φk \ {x}) +

∑

j∈K\{k}

I(Φj)
)
‖x‖α

)]

=
∑

k∈K

E
[ ∑

x∈Φk

exp

(
− βk
Pk
‖x‖α(I(Φk \ {x})

)
Θk(x)

]
. (3.23)

Here, step (a) follows from hx ∼ exp(1). The final step follows from the independence of
Φk, ∀ k ∈ K, where,

Θk(x) =
∏

j∈K\{k}

E
[

exp

(
−βk
Pk
‖x‖αI(Φj)

)]

=
∏

j∈K\{k}

E
[

exp

(
− βk‖x‖α

Pk

∑

y∈Φj

Pjhy‖y‖−α
)]

=
∏

j∈K\{k}

E
[ ∏

y∈Φj

Ehy
[

exp

(
−βk‖x‖

α

Pk
Pjhy‖y‖−α

)]]

(a)
=

∏

j∈K\{k}

E
[ ∏

y∈Φj

1

1 + βk
Pj
Pk

(
‖x‖
‖y‖

)α
]

=
∏

j∈K\{k}

Gj(vk,j(x,y)).

Step (a) follows from the fact that {hy} is an i.i.d. sequence of exponential random variables.
Following from (3.23), we get,

Pc =
∑

k∈K

E
[ ∑

x∈Φk

Θk(x) exp

(
− βk
Pk
‖x‖αI(Φk \ {x})

)]
.

The exponential term can be simplified following on similar lines as that of Θk(x) and hence
we obtain the final expression.

Remark 3.11 (Coverage probability is the summation ofK+1 sum-product functionals). In
(3.21), Pc is the summation of (K+1) per-tier coverage probabilities, due to the contribution
of (K + 1) tiers in Φ =

⋃
k∈K

Φk. Recalling Definition 4.10, Pck is in the form of sum-product

functional over Φk, with g(x) ≡∏j∈K\{k}Gj(vk,j(x,y)) and v(x,y) ≡ vk,k(x,y) in (3.5).

In the previous Section, we have computed the sum-product functional over PPP, PCP
and the offspring point process in terms of arbitrary measurable functions g(x) and v(x,y).
We directly apply these results to compute Pck. We first provide the expression of PGFL
of Φ0 evaluated at vk,0(x,y). Depending on the construction of Φ0 based on three different
configurations of Φu (refer to (3.2)), we will have different expressions of G0(·).
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Lemma 3.12. The PGFL of Φ0 is given by:

• case 1: G0(vk,0(x,y)) = 1,

• case 2:
G0(vk,0(x,y)) =

∫

R2

1

1 + P0βk
Pk
‖x‖α‖y‖−α

f0(y)dy,

• case 3:
G0(vk,0(x,y)) =

∫

R2

Gc0(vk,0(x,y)|z′)f0(z′)dz′,

where Gc(·|z) is given by Lemma 3.8.

Proof. In case 1, Φ0 is a null set if users are distributed according to a PPP, and hence
G0(vk,0(x,y)) = 1. In case 2, where users are distributed as a PCP with parent PPP Φj

(j ∈ K1),

G0(vk,0(x,y)) =

∫

R2

vk,0(x,y)f0(y)dy. (3.24)

In case 3, Φ0 = Bz0
j is a cluster of Φj (j ∈ K2) centered at z0. Its PGFL is provided by

Lemma 3.8, and the final result is obtained by taking expectation over z0 ∼ f0(z0).

Having characterized the PGFLs of Φk ∀ k ∈ K, we evaluate Pck in the following
Lemmas.

Lemma 3.13. When the BS tier Φk is a PCP, i.e., k ∈ K2, per-tier coverage can be expressed
as:

Pck =

∫∫

R2×R2

Gk(vk,k(x,y))G̃ck(vk,k(x,y)|z)
∏

j∈K\{k}

Gj(vk,j(x,y))Λk(dx, dz), k ∈ K2, (3.25)

where Λk(x, z) is given by (3.10), G̃ck(·) is obtained by Lemmas 3.8. Gj(·) and Gk(·) are
given by Lemma 3.7.

Proof. The result is obtained by the direct application of Lemma 3.5.

Remark 3.14. When Φj is a PPP, i.e., j ∈ K1, Gj(vk,j(x,y)) presented in Lemma 3.7 can
be further simplified as:

Gj(vk,j(x,y)) = exp

(
− πλj

(
Pjβk
Pk

) 2
α

‖x‖2C(α)

)
;∀j ∈ K1, (3.26)

with C(α) = α
2π

sin(2π
α

). See [21, Theorem 1] for an elaborate proof.
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In the next Lemma, we present per-tier coverage probability Pck (k ∈ K1).

Lemma 3.15. When the BS tier is a PPP, per-tier coverage can be expressed as:

Pck = λk

∫

R2

∏

j∈K

Gj(vk,j(x,y))dx, k ∈ K1, (3.27)

where Gj(·) is obtained by (3.26) for j ∈ K1. When j ∈ K2, Gj(·) is given by Lemma 3.7.

Proof. The result is obtained by the direct application of Lemma 3.4.

Having characterized per-tier coverage Pck for k ∈ K1∪K2, we are left with the evaluation
of Pc0 which we do next. Similar to Lemma 3.12, we will have three different cases for Pc0

owing to different user configurations.

Lemma 3.16. Pc0 can be expressed as follows.

Pc0 =





0,when Φ0 = ∅ (case 1),∫
R2

∏
j∈K\{0}

Gj(v0,j(z0,y))f0(z0)dz0,

when Φ0 = {z0} (case 2),
∫
R2

∫
R2 exp

(
− m̄0

(∫
R2

(
1− v0,0(x,y)

)
×

f̄0(y|z0)dy

))(
m̄0

∫
R2 v0,0(x,y)f̄0(y|z0)dy + 1

)
×

∏
j∈K\{0}

Gj(v0,j(x,y))f̄0(x|z0)f0(z0) dx dz0,

when Φ0 = Bz0
q (case 3),

where Gj(·) is given by Lemma 3.12 and f0(z0) is the PDF of z0 which is defined in (3.2).

Proof. Case 1 is trivial. For case 2, Φ0 has only one point with PDF f0(z0). For case 3,
we use Lemma 3.6 with g(x) =

∏
j∈K\{0}

Gj(v0,j(x,y)) and v(x,y) = v0,0(x,y) and take ex-

pectation with respect to z0 ∼ f0(z0).

Note that although we have derived Pc for cases 1-3 separately, in real networks the
user distribution is a mixture of these cases. We can easily extend this analysis for such
mixed user distribution following the arguments presented in [71, Section IV-E].
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3.4.2 Convergence
In this Section, we prove that as cluster size of all the PCPs (i.e. Φk, ∀ k ∈ K2 and

Φu for case 2 and case 3) tends to infinity, our general model converges to the PPP-based
baseline model where all BS and users are modeled as independent PPPs. First, we focus
on the limiting nature of the BS point process Φ′ = ∪k∈K1∪K2Φk. As the cluster size of Φk

∀ k ∈ K2 increases, the limiting baseline model in this case consists of BS tiers all modeled
as PPPs, i.e., Φ̄ = ∪k∈K1∪K2Φ̄k, where {Φ̄k = Φk : k ∈ K1} is the collection of the PPP BS
tiers in the original model and {Φ̄k : k ∈ K2} is the collection of BS tiers which are also PPP
with intensity m̄kλpk . We will show that as the cluster size of Φk (k ∈ K2) goes to infinity,
Φk converges to Φ̄k which is independent of the parent PPP Φpk .

We first formally introduce the notion of increasing the cluster size of a PCP Φk (k ∈ K2)
which means that the points in offspring process (i.e., z + Bz

k) will lie farther away from
the cluster center (z ∈ Φpk) with high probability. One way of modeling this notion is
to scale the positions of the offspring points with respect to the cluster center by ξ, i.e.,
z + Bz

k = {y} = {z + ξs}. Then the density function defined in R2 becomes

f̄k,ξ(y|z) ≡ fk,ξ(y − z) =
1

ξ2
fk
(y − z

ξ

)
, ∀ y ∈ z + Bz

k. (3.28)

The limiting nature of PCP to PPP is formally proved in the following Proposition.

Proposition 3.17 (Weak Convergence of PCP to PPP). For a PCP Φk (λpk , fk,ξ, m̄k),

Φk → Φ̄k (weakly) as ξ →∞, (3.29)

where Φ̄k is a PPP of intensity m̄kλpk if sup(fk) <∞.

Proof. A simple point process Φk (k ∈ K2) converges weekly to Φ̄k if [77, Theorem 9.1.2]

E[Φk(A)]→ E[Φ̄k(A)], (3.30a)

P(Φk(A) = 0)→ P(Φ̄k(A) = 0), (3.30b)
for any closed A ⊂ R2. Here the same notation has been used to designate a point process and
its associated counting measure. Since E[Φk(A)] = E[Φ̄k(A)] = m̄kλpk , (3.30a) is satisfied.
Next, we observe from (3.28) that as long as fk(·) is bounded, fk,ξ(s)→ 0 as ξ →∞. Now,
the void probability of Φk i.e. the probability that no points of Φk will lie in A along with
the limit ξ →∞ can be written as:

lim
ξ→∞

P(Φk(A) = 0) = lim
ξ→∞

E
[ ∏

z∈Φpk

∏

y∈z+Bzk

1(y /∈ A)

]

= lim
ξ→∞

exp

(
− λpk

∫

R2

(
1− exp

(
− m̄k

(
1−

∫

R2\A

fk,ξ(y − z)dy

)))
dz

)
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= lim
ξ→∞

exp

(
− λpk

∫

R2

(
1− exp

(
− m̄k

∫

A

fk,ξ(y − z)dy

))
dz

)

(a)
= lim

ξ→∞
exp

(
− λpkm̄k

∫

R2

∫

A

fk,ξ(y − z)dy dz

)

(b)
= exp

(
− λpkm̄k|A|

)
= P(Φ̄k(A) = 0),

where (a) follows from Taylor series expansion of the exponential function under inte-
gration and neglecting the higher order terms as ξ →∞ and (b) follows from interchanging
the order of integrals and the fact that |A| is finite.

We now argue that as ξ →∞, Φk becomes independent of its parent PPP Φpk .

Proposition 3.18. The limiting PPP Φ̄k and the parent PPP Φpk of Φk (k ∈ K2) are
independent, i.e.,

lim
ξ→∞

P(Φk(A1) = 0,Φpk(A2) = 0) = P(Φ̄k(A1) = 0)P(Φpk(A2) = 0), (3.31)

where A1, A2 ⊂ R2 are arbitrary closed compact sets.

Proof. Following Choquet theorem for random closed sets [13, Theorem 6.1], (3.31) is a
sufficient condition to claim independence of Φ̄k and Φpk . Under the limit ξ →∞:

lim
ξ→∞

P(Φk(A1) = 0,Φpk(A2) = 0)

= lim
ξ→∞

P(Φk(A1) = 0|Φpk(A2) = 0)P(Φpk(A2) = 0)

= lim
ξ→∞

E
[ ∏

z∈Φpk
∩Ac2

∏

y∈z+Bzk

1(y /∈ A1)

]
P(Φpk(A2) = 0)

= lim
ξ→∞

exp

(
− λpk

∫

R2\A2

(
1− exp

(
− m̄k

∫

A1

fk,ξ(y − z)dy

))
dz

)
P(Φpk(A2) = 0)

(a)
= lim

ξ→∞
exp

(
− λpkm̄k

∫

R2\A2

∫

A1

fk,ξ(y − z)dydz

)

× P(Φpk(A2) = 0)

= lim
ξ→∞

exp

(
− λpkm̄k

∫

R2

∫

A1

fk,ξ(y − z)dy dz

)

× exp

(
λpkm̄k

∫

A2

∫

A1

fk,ξ(y − z)dy dz

)
P(Φpk(A2) = 0)
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Offspring point

Parent point

Figure 3.2: A realization of a Matérn cluster process.

(b)
= exp

(
− λpkm̄k|A1|

)
P(Φpk(A2) = 0)

= lim
ξ→∞

P(Φk(A1) = 0)P(Φpk(A2) = 0),

where (a) follows on the similar lines of step (a) in the proof of Proposition 3.17. In (b), we
apply the limit ξ →∞. The first term in the product follows from Proposition 3.17 and the
second term goes to 1 as the double integral over a finite region (A1 × A2) tends to zero as
limξ→0 fk,ξ(s) = 0.

Remark 3.19. Using Propositions 3.17 and 3.18, we can claim that the K-tier HetNet
model under case 2 (Φu is a PCP around Φq (q ∈ K1)) converges to that of case 1 (i.e.,
users form a PPP independent of BS locations) as the cluster size of Φu increases to infinity.
Further, for case 3, where Φu and Φq are coupled by the same parent PPP Φpq , as the
cluster size of Φu as well as Φq (q ∈ K2) increase to infinity, Φu and Φq become independent
PPPs.

From this Proposition, we can directly conclude the following.

Corollary 3.20. When cluster size of Φk, ∀ k ∈ K2 tends to infinity, coverage probability
can be written as [21, Corollary 1]:

Pc =
π

C(α)

∑
k∈K1

λkP
2
α
k

β
2
α
k

+
∑

k∈K2

m̄kλpk
P

2
α
k

β
2
α
k∑

j∈K1
λjP

2
α
j +

∑
j∈K2

m̄jλpjP
2
α
j

, (3.32)

where C(α) = α
2π

sin(2π
α

).

Having derived the expression for coverage probability under the general framework, we
now focus on two special cases as follows.
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Offspring point

Parent point

Figure 3.3: A realization of a Thomas cluster process.

3.4.3 Matérn cluster process
We assume that all BS tiers Φk, ∀ k ∈ K2 and user tier Φu (for case 2 and case 3) are

modeled as MCP. We choose MCP for Φk (∀ k ∈ K2) since it closely resembles 3GPP model
for SBS and user clusters. We first formally define MCP Φk (k ∈ K2) as follows.

Definition 3.21 (MCP). A PCP Φk (λpk , fk, m̄k) is called a MCP if the distribution of the
offspring points in Bz

k is uniform within a disc of radius rdk around the origin denoted by
b(0, rdk), i.e., if s = (‖s‖, arg(s)) ≡ (s, θs) ∈ Bz

k denotes a point of the offspring point process
Bz
k with cluster center at origin, then the joint PDF of the polar coordinates of s is denoted

by:

fk(s) = fk(s, θs) =
2s

r2
dk

× 1

2π
, 0 < s ≤ rdk , 0 < θs ≤ 2π. (3.33)

Note that we will use (s, θs) and (‖s‖, arg(s)) as the representation of s ∈ R2 in Polar co-
ordinates interchangeably. A realization of an MCP is illustrated in Fig. 3.2. First, we observe
that the functions associated with the sum-product functional in the coverage probability
expression in Theorem 3.10 are isotropic, i.e., referring to (3.5), v(x,y) = v(x, y) ≡ vk,k(x, y)
and g(x) = g(x) ≡∏j∈K\{k}Gj(vk,j(x, y)), ∀ k, j ∈ K. Thus, the sum-product functional for
Φk appearing in Pck in (3.21) is in the form: E

∑
x∈Φk

g(x)
∏

y∈Φk\{x} v(x, y). Following Lem-
mas 3.4, 3.5 and 3.8, it is sufficient to evaluate the PGFLs Gj(vk,j(x, y)) and Gcj(vk,j(x, y))
for Pck, which we do next. We will use these results to derive the final expression of coverage
probability.

Remark 3.22. We observe that the integrals appearing in (3.16) and (3.21) are in the form:
∫ ∞

0

∫ 2π

0

ρ(x, z)f̄k(x|z)dx dθx =

∫ ∞

0

ρ(x, z)

∫ 2π

0

f̄k(x, θx|z)dθx dx. (3.34)

Here
∫ 2π

0
f̄k(x, θx|z)dθx is the marginal distribution of the magnitude of x ∈ Φk (k ∈ K2)

conditioned on z ∈ Φpk .
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b(0, rdk
� z)

b(z, rdk
)

b(0, rdk
)

rdk

z z

b(z, rdk
)

b(0, rdk
)

rdk

z

z

(a) z ∈ b(0, rdk), x ∈ b(0, rdk − z), or z ∈
b(0, rdk), x ∈ b(z, rdk) \ b(0, rdk − z).

b(0, rdk
� z)

b(z, rdk
)

b(0, rdk
)

rdk

z z

b(z, rdk
)

b(0, rdk
)

rdk

z

z

(b) z /∈ b(0, rdk), x ∈ b(z, rdk).

Figure 3.4: Possible positions of a cluster center at z for the evaluation of the distribution
of distance of a randomly chosen point x ∈ z + Bz

k of an MCP from origin.

In order to characterize the conditional magnitude distribution of x given z ∈ Φpk , we
define three regions R(1)

k ,R(2)
k ,R(3)

k ⊂ R2 × R2 as:

R(1)
k ≡ z ∈ b(0, rdk), x ∈ b(0, rdk − z), (3.35a)
R(2)
k ≡ z ∈ b(0, rdk), x ∈ b(z, rdk) \ b(0, rdk − z), (3.35b)
R(3)
k ≡ z /∈ b(0, rdk), x ∈ b(z, rdk). (3.35c)

Illustrations of these regions are provided in Fig. 3.4. For each region, the marginal distri-
bution of x conditioned on z is given by [78]:

∫ 2π

0
f̄k(x, θx|z)dθx = χ

(`)
k (x, z) when (z,x) ∈

R(`)
k (` = 1, 2, 3), where

χ
(1)
k (x, z) =

2x

r2
dk

, 0 < x < rdk − z, 0 < z ≤ rdk , (3.36a)

χ
(2)
k (x, z) =

2x

πr2
dk

cos−1

(
x2 + z2 − r2

dk

2xz

)
,

rdk − z < x < rdk + z, 0 < z ≤ rdk , (3.36b)

χ
(3)
k (x, z) =

2x

πr2
dk

cos−1

(
x2 + z2 − r2

dk

2xz

)
,

z − rdk < x < z + rdk , z > rdk . (3.36c)

We now present the expressions of PGFLs of Φk (k ∈ K2).

Corollary 3.23 (PGFL of MCP). The PGFL of MCP Φj (j ∈ K2) evaluated at vk,j(x, y)
is:

Gj(vk,j(x, y)) = exp

(
− 2πλpj

rdj∫

0

(
1− exp

(
− m̄j
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×
( rdj−z∫

0

(1− vk,j(x, y))χ
(1)
j (y, z)dy +

rdj+z∫

rdj−z

(1− vk,j(x, y))

× χ(2)
j (y, z)dy

)))
zdz − 2πλpj

×
∞∫

rdj

(
1− exp

(
− m̄j

z+rdj∫

z−rdj

(1− vk,j(x, y)χ
(3)
j (y, z)dy

))
zdz

)
, (3.37)

where χ(`)
j (x, z) (` = 1, 2, 3) are given by (6.3).

Proof. The expression can be derived from (3.16) using Remark 3.22.

Corollary 3.24 (PGFL of Offspring Point Process of MCP). The PGFL of Bz
j , which is the

offspring process of Φj (j ∈ K2) centered at z, evaluated at vk,j(x, y) is given by

Gcj(vk,j(x, y)|z) =

{
G

(1)
cj (vk,j(x, y)|z) z ≤ rdj

G
(2)
cj (vk,j(x, y)|z) z > rdj ,

(3.38)

where G(1)
cj (vk,j(x, y)|z) ≡ exp

(
−m̄j

( rdj−z∫
0

(1−vk,j(x, y))χ
(1)
j (y, z)dy+

rdj+z∫
rdj−z

vk,j(x, y)χ
(2)
j (y, z)dy

))

and G(2)
cj (vk,j(x, y)|z) ≡ exp

(
− m̄j

z+rdj∫
z−rdj

(1− vk,j(x, y))χ
(3)
j (y, z)dy

)
.

Proof. The expression can be derived from (3.18) using Remark 3.22.

We can now obtain the PGFL of an MCP under its reduced Palm distribution at
vk,k(x, y) by rewriting (3.12) and using (3.17) as: G̃k(vk,k(x, y)|z) =





G̃
(1)
k (vk,k(x, y)|z) ≡ Gk(vk,k(x, y))G

(1)
ck (vk,k(x, y)|z),

z ≤ rdk ,

G̃
(2)
k (vk,k(x, y)|z) ≡ Gk(vk,k(x, y))G

(2)
ck (vk,k(x, y)|z),

z > rdk ,

(3.39)

where Gk(vk,k(x, y)) and G̃ck(vk,k(x, y)|z) are given by Corollaries 3.23 and 3.24, respectively.
We are left with the PGFL of Φ0, i.e., G0(v0,k(x, y)) can be obtained by substitution of f0(·)
in Lemma 3.12 with (4.23). For case 2, this can be given as:

G0(vk,0(x, y)) =

rd0∫

0

1

1 + P0βk
Pk

(
x
y

)−α
2y

r2
d0

dy.
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For case 3,

G0(vk,0(x, y)) =

rd0∫

0

Gc0(vk,0(x, y)|z0)
2z0

r2
d0

dz0.

We now present the expression of per-tier coverage Pck for k ∈ K2.

Corollary 3.25. Per-tier coverage probability for k ∈ K2 when all BS tiers in K2 are modeled
as MCPs can be expressed as:

Pck = 2πλpkm̄k

rdk∫

0

rdk−z∫

0

g(x)Gk(vk,k(x, y))G(1)
ck

(vk,k(x, y)|z)χ
(1)
k (x, z)dx zdz

+ 2πλpkm̄k

rdk∫

0

rdk+z∫

rdk−z

g(x)Gk(vk,k(x, y))G(1)
ck

(vk,k(x, y)|z)χ
(2)
k (x, z)dx zdz

+ 2πλpm̄k

∞∫

rdk

z−rdk∫

z−rdk

g(x)Gk(vk,k(x, y))G(2)
ck

(vk,k(x, y)|z)χ
(3)
k (x, z)dx zdz, k ∈ K2,

where g(x) =
∏
j∈K1

Gj(vk,j(x, y))
∏

j∈K2\{k}
Gj(vk,j(x, y)). Here Gj(vk,j(x, y)) is given by (3.26)

and (3.37) for j ∈ K1 and j ∈ K2, respectively, and G
(1)
ck (·), G(2)

ck (·) are given by Corol-
lary 3.24.

Proof. The expression is obtained from Lemma 3.13 by using the Polar domain representation
of the vectors and the distance distribution introduced in (6.3).

As noted earlier, Pc0 can be obtained by computing sum-product functional over Φ0

which has three different forms depending on the user configuration. While case 1 and
case 2 are simple, for case 3, we need to evaluate sum-product functional of z + Bz

k.

Corollary 3.26. Per-tier coverage probability for k = 0 when all BS tiers in K2 are modeled
as MCPs can be expressed as: Pc0

=





0, case 1,
rd0∫
0

∏
j∈K\{0}

Gj(v0,j(z0, y))f̄0(z0)dz0, case 2,
rd0∫
0

[ ∫ rd0
−z0

0
H(x, z0)χ

(1)
0 (x, z0)dx

+
∫ rd0

+z0
rd0
−z0 H(x, z0)χ

(2)
0 (x, z0)dx

]
2z0/r

2
d0

dz0, case 3,
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and

H(x, z) =
∏

j∈K\{0}

Gj(v0,j(x, y))×

exp

(
− m̄0

(∫ rd0
−z

0

(1− v0,0(x, y))χ
(1)
0 (y, z)dy+

∫ rd0
+z

rd0
−z

(1− v0,0(x, y))χ
(2)
0 (y, z)dy

))
×

(
m̄0

(∫ rd0
−z

0

v0,0(x, y)χ
(1)
0 (y, z)dy

+

∫ rd0
−z

0

v0,0(x, y)χ
(2)
0 (y, z)dy

)
+ 1

)
. (3.40)

Proof. For case 1 and case 2, the result follows directly from Lemma 3.16. For case 3,
we need the sum-product functional of Φ0 = z0 + Bz0

q ≡ z0 + Bz0
0 . Now, by construction,

z0 < rdq ≡ rd0 . Since the representative BS cluster Bz0
0 has the same cluster center z0 of

the typical user located at origin. We first evaluate the sum-product functional of z + Bz
0

following Lemma 3.6, which can be written as: E
[ ∑
x∈(z+Bz0)

g(x)
∏

y∈(z+Bz0)\{x}
v(x, y)

]
=

g(x) exp

(
− m̄0

(∫ rd0
−z

0

(1− v(x, y))χ
(1)
0 (y, z)dy+

∫ rd0
+z

rd0
−z

(1− v(x, y))χ
(2)
0 (y, z)dy

))(
m̄0

(∫ rd0
−z

0

v(x, y)×

χ
(1)
0 (y, z)dy +

∫ rd0
+z

rd0
−z

v(x, y)χ
(2)
0 (y, z)dy

)
+ 1

)
, z ≤ rd0 .

Now substituting g(x) by
∏

j∈K\{0}
Gj(v0,j(x, y)) and v(x, y) by v0,0(x, y) (given by (3.21) and

(3.22), respectively) and deconditioning over z0, we get the final form.

3.4.4 Thomas cluster process
We further provide the results of coverage probability when all BS tiers Φk, ∀ k ∈ K2

are modeled as TCP. We first formally define TCP as follows.

Definition 3.27 (TCP). A PCP Φk (λpk , fk, m̄k) is called a TCP if the distribution of the
offspring points in Bz

k is Gaussian around the cluster center at origin, i.e. for all s ∈ Bz
k,

fk(s) = fk(s, θs) =

s

σ2
k

exp

(
− s2

2σ2
k

)
1

2π
, s > 0, 0 < θs ≤ 2π. (3.41)
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A realization of a TCP is illustrated in Fig. 3.3. It will be evident at the end of this
Section that compared to MCP, TCP yields simpler expression of coverage probability (due
to infinite support of fk(s)). Note that while TPC does not directly analogous to the notion
of cluster adopted in 3GPP HetNet, we include it here to demonstrate the generality of the
proposed framework that surpasses that of the cluster-based simulation models adopted by
3GPP. Given that z is the cluster center of x, i.e., x ∈ z+Bz

k, we write the conditional PDF
of x as [59]:

∫ 2π

0

f̄k(x, θx|z)dθx = Ωk(x, z) (3.42)

=
x

σ2
k

exp

(
−x

2 + z2

2σ2
k

)
I0

(
xz

σ2
k

)
, x, z > 0, (3.43)

where I0(·) is the modified Bessel function of the first kind with order zero. As we have done
for MCP, we first provide the expressions of Gj(vk,j(x, y)) and Gcj(vk,j(x, y)) for j ∈ K2.

Corollary 3.28 (PGFL of TCP). The PGFL of TCP Φj evaluated at vk,j(x, y) is given by:

Gj(vk,j(x, y)) = exp

(
−2πλpj

∞∫

0

(
1−exp

(
1−m̄j

( ∞∫

0

(1−vk,j(x, y))Ωj(y, z)dy

))
zdz

)
.

Proof. Similar to Corollary 3.23, the expression can be derived from (3.16) using Remark 3.22.

Corollary 3.29 (PGFL of Offspring Point Process of TCP). When z + Bz
j is the offspring

process of a TCP Φj, its PGFL evaluated at vk,j(x, y) is given by: Gcj(vk,j(x, y)|z) =

exp

(
− m̄j

( ∞∫

0

(1− vk,j(x, y))Ωj(y, z)dy

))
. (3.44)

Proof. Similar to Corollary 3.24, the expression can be derived from Lemma 3.8 using Re-
mark 3.22.

For PGFL of Φ0, i.e., G0(v0,k(x, y)), we can substitute f0(·) in Lemma 3.12 with (4.22).
For case 2,

G0(vk,0(x, y)) =

∞∫

0

1

1 + P0βk
Pk

(
x
y

)−α
y

σ2
0

exp

(
− y2

2σ2
0

)
dy.

For case 3,

G0(vk,0(x, y)) =

∞∫

0

Gc0(vk,0(x, y)|z0)
z0

σ2
0

exp

(
− z2

0

2σ2
0

)
dz0.
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We finally provide the expression of per-tier coverage probability for k ∈ K \ {0}.

Corollary 3.30. Per-tier coverage probability for k ∈ K2 when all BS tiers in K2 are modeled
as TCPs can be expressed as:

Pck = 2πλpkm̄k

∞∫

0

∞∫

0

∏

j∈K

Gj(vk,j(x, y))Gk(vk,k(x, y))×

Gck(vk,k(x, y|z))Ωk(x, z)dx zdz. (3.45)

Proof. Similar to Corollary 3.25, the expression can be derived from Lemma 3.5 using Re-
mark 3.22.

We can obtain Pc0 following the same arguments provided in the previous Section.

Corollary 3.31. Per-tier coverage probability for k = 0 when all BS tiers in K2 are modeled
as TCPs can be expressed as: Pc0 =





0, case 1,
∞∫
0

∏
j∈K\{0}

Gj(v0,j(z0, y))f̄0(z0)dz0, case 2,
∞∫
0

∞∫
0

∏
j∈K\{0}

Gj(v0,j(x, y))

exp

(
− m̄k

∞∫
0

(1− v0,0(x, y))Ω0(y, z0)dy

)
×

(
m̄0

∫∞
0
v0,0(x, y)×

Ω0(y, z0)dy + 1
)

Ω0(x, z0)dx z0
σ2

0
exp

(
− z2

0

2σ2
0

)
dz0, case 3.

Proof. Similar to Corollary 3.26, the expression can be derived from Lemma 3.6 using Re-
mark 3.22.

3.5 Results and discussions
In this Section, we compare the performance of Models 1-4 introduced in Section 3.1.2

in terms of the coverage probability, Pc. We first verify the analytical results with simulation
of the K-tier HetNet. For all numerical results, we fix β1 = β2 = β, and α = 4. All the
BSs in the same tier transmit at fixed powers with P1/P2 = 30 dB. For Models 1 and 2, we
choose K = 2, K1 = {1, 2}, K2 = ∅. Users in Model 2 are distributed as a PCP, Φu with
Φ2 being the parent PPP. For Models 3 and 4, we choose K = 2, K1 = {1}, K2 = {2}. We
have also computed Pc by Monte Carlo simulation with 105 iterations, where the user and
BS point processes were generated in a circular shaped simulation window of area 30 Km2.
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Figure 3.5: Coverage probability as a function of SIR threshold (α = 4, λ1 = 1Km−2,
P1 = 1000P2, and λ2 = λp2 = 100λ1).
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Figure 3.6: Coverage probability as a function of SIR threshold (α = 4, λ1 = 1Km−2,
P1 = 1000P2, λp2 = 25λ1, and m̄2 = 4).
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Figure 3.7: Coverage probability as a function of λ2/λ1 (α = 4, λ1 = 1Km−2, P1 = 1000P2,
and λ2 = λp2 = 100λ1).

The perfect match between the simulation and analytical results verifies the accuracy of
our analysis. From Figs. 3.5-3.6, we conclude that Pc strongly depends on the choice of
HetNet models. For instance, a typical user experiences enhanced coverage in Model 2 than
Model 1. From Fig. 3.6, we observe that Pc of Model 1 is a lower bound on Pc of Model
4 and is an upper bound on Pc of Model 3. These observations bolster the importance of
choosing appropriate models for different BS and user configurations that are cognizant of
the coupling in the locations of the BSs and users.

3.5.1 Effect of variation of cluster size

We vary the cluster size of the PCP and observe the trend in Pc for Models 2-4. For
Model 2, we find in Fig. 3.5 that Pc decreases as cluster size (i.e. rd2 for MCP, σ2 for TCP)
increases and converges towards that of Model 1. The reason of the coverage boost for denser
cluster is that the SBS at cluster center lies closer to the typical user with high probability,
hence improving the signal quality of the serving link. Moving to Models 3 and 4 in Fig. 3.6,
we again observe that Pc of the two models converges to that of Model 1 as the cluster size
(i.e. rd2 for MCP, σ2 for TCP) tends to infinity. We proved this convergence in Section 3.4.2.
We further observe from Fig. 3.6 that increasing cluster size has a conflicting effect on Pc
for Models 3 and 4: Pc of Model 4 increases whereas that of Model 3 decreases. This can
be explained as follows. For Model 3, as cluster size increases, the collocated user and SBS
clusters become sparser and the candidate serving SBS lies farther to the typical user with
high probability. On the contrary, for Model 4 where the user locations form an independent
PPP, the distance between the candidate serving SBS and the typical user decreases more
likely with the increment of cluster size.
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Figure 3.8: Coverage probability as a function of λp2/λ1 (α = 4, λ1 = 1Km−2, P1 = 1000P2,
λp2 = 25λ1, and m̄2 = 4).

3.5.2 Effect of variation of intensity of parent PPP
We study the effect of the variation of the intensity of the parent PPP on Pc for Models

2-4 (λ2 for Model 2 and λp2 for Models 3 and 4) in Figs. 3.7 and 3.8. For Model 1, it is well-
known that Pc is independent of the intensities of BS PPPs [21]. The intuition behind the
observation is the fact that changing intensity of a PPP is equivalent to scaling the locations
of all the points by same factor. Hence the scaling factor cancels out from the serving and
interfering powers in the SIR expression. However, changing the intensity of the parent PPP
of a PCP is not equivalent to the location scaling of all the points by same factor. Thus, Pc
for Models 2-4 varies as a function of the intensity of the parent PPP. We also observe that
as intensity of parent PPP increases, Pc for Models 2-4 approaches to that of Model 1.

3.6 Summary
In this chapter, we developed a unified HetNet model by combining PPP and PCP

that accurately models variety of spatial configurations for SBSs and users considered in
practical design of HetNets, such as in the 3GPP simulation models. This is a significant
generalization of the PPP-basedK-tier HetNet model of [21,50], which was not rich enough to
model non-uniformity and coupling across the locations of users and SBSs. For this model,
we characterized the downlink coverage probability under max-SIR cell association. As a
part of our analysis, we evaluated the sum-product functional for PCP and the associated
offspring point process. We also formally proved that a PCP weakly converges to a PPP
when cluster size tends to infinity. Finally we specialized our coverage probability results
assuming that the PCPs in the model are either TCPs or MCPs.
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4

General HetNet Model: Part II

4.1 Introduction

Network heterogeneity is at the heart of current 4G and upcoming 5G networks. A key
consequence of the heterogeneous deployments is the emergence of different types of spatial
couplings across the locations of BSs and users. Perhaps the most prominent one is the user-
BS coupling, where the users tend to form spatial clusters or hotspots [44, 48, 79] and small
cell BSs (SBSs) are deployed within these hotspots to provide additional capacity. Further,
depending on the deployment objectives, the point patterns of BSs of a particular tier may
exhibit some intra-tier coupling, such as clustering patterns for small cells [2,3] and repulsive
patterns for macrocells deployed under a minimum inter-site distance constraint. Further,
inter-tier coupling may exist between the locations of BSs of different tiers, for instance,
macrocells and small cells when the latter are deployed at the macrocell edge to boost cell
edge coverage [1].

Not surprisingly, the HetNet simulation models used by the standardization bodies,
such as the third generation partnership project (3GPP), are cognizant of the existence of
this spatial coupling [1]. Unfortunately, this is not true for the stochastic geometry based
analytical HetNet models, e.g., see [20,21], which mostly still rely on the assumption that all
network elements (BSs and users) are modeled as independent PPPs. That said, it has been
recently shown that PCP-based models are well-suited to capture the aforementioned spatial
coupling in a similar way as it is incorporated in 3GPP simulation models [61,71,72,79]. Since
PCPs are defined in terms of PPPs, they are also very amenable to mathematical analysis.
A key prior work in this area is [79], which completely characterized the downlink coverage
probability for a PCP-based HetNet model under max-SINR based association scheme in
which the typical user connects to the BS offering maximum instantaneous received SINR [79].
However, the downlink analysis for the more practical association scheme in which the typical
user in the HetNet connects to the BS offering the strongest received power requires a very
different mathematical treatment and has not been done yet. In this chapter, we plug this
knowledge gap by providing a complete characterization of coverage probability under this
association model.
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4.1.1 Background and related works

Since the use of PPPs for modeling HetNets is by now fairly well-known, we advise
interested readers to refer to books, surveys and tutorials, such as [23,31–33,80] to learn more
about this direction of research. Although sparse, there have been some works on modeling
spatial coupling between BSs and users in random spatial models for cellular networks. In
[50], user-BS coupling was introduced in a PPP-based single tier cellular network model by
conditionally thinning the user PPP and biasing user locations towards the BS locations.
Owing to the natural connection of the formation of hotspots to the clustering patterns
of PCPs, PCP was used to model the user distributions in [60, 61, 71, 81], where coupling
between the users and BS locations was introduced by placing the SBSs at the cluster centers
(parent points) of the user PCP. Further, since intra-tier coupling can be either attractive or
repulsive, no single point process is the best choice for capturing it. For modeling repulsions,
Matérn hard-core process [70,82], Gauss-Poisson process [64], Strauss hardcore process [83],
Ginibre point process [84,85], and more general determinantal point processes [66] have been
used for BS distributions. On the other hand, for modeling attraction, PCP [72] and Geyer
saturation process [83] have been proposed. For modeling inter-tier coupling, Poisson hole
process (PHP) has been a preferred choice [68,69], where the macro BSs (MBSs) are modeled
as PPP and the SBSs are modeled as another PPP outside the exclusion discs (holes) centered
at the MBS locations. Among these “beyond-PPP” spatial models of HetNets, the PCP has
attracted significant interest because of its generality in modeling variety of user and BS
configurations and its mathematical tractability [79,86]. We now provide an overview of the
existing work on PCP-based models for HetNets.

In [69,87], the authors assumed that the SBSs in a two-tier HetNet are distributed as a
PCP and derived downlink coverage probability assuming that the serving BS is located at
a fixed distance from the receiver, which circumvented the need to consider explicit cell as-
sociation. While this setting provides useful initial insights, the analysis cannot be directly
extended to incorporate realistic cell association rules, such as max-power based associa-
tion [22]. The primary challenge in handling cell association in a stochastic geometry setting
is to jointly characterize the serving BS distance and the interference field. This challenge
does not appear when BS is assumed to lie at a fixed distance from the receiver, such as
in [69, 87]. It is worth noting that the distance of the serving BS from the receiver under
max-power based association can be evaluated using contact distance distributions of PCPs,
which have recently been characterized in [73, 74]. However, these alone do not suffice be-
cause we need to jointly characterize the serving BS distance and the interference field, which
is much more challenging. This is the main reason why this problem has remained open for
several years. In [88], the authors characterized handoff rates for a typical user following an
arbitrary trajectory in a HetNet with PPP and PCP-distributed BSs. Although the setup is
very similar to this chapter, the metric considered in [88] did not require the characterization
of coverage probability. In [89], the authors developed analytical tools to handle this correla-
tion and derived coverage probability when the BSs are modeled as a Matérn cluster process
(MCP). However, the analysis is dependent on the geometrical constructions which is very
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specific to an MCP and is hence not directly applicable to a general PCP. The coverage
analysis for a general PCP was provided in [72] where analytical tractability was preserved
by assuming that the SBSs to be operating in a closed access mode, i.e, a user can only
connect to a SBS of the same cluster. In [79], we have provided a comprehensive cover-
age analysis for the unified HetNet model under max SINR-based association strategy with
SINR threshold greater than unity. However, the analysis cannot be directly extended to the
max power-based association setup because of the fundamental difference in the two settings
from the analytical perspective (please refer to [32] for a more detailed discussion of the
differences in analytical approaches for the characterization of coverage probability for the
two association strategies). Recently, in [90], the open problem of the coverage analysis for
a single tier cellular network under max-power connectivity with PCP-distributed BSs and
independent user locations was solved by expressing coverage probability as a sum-product
functional over the parent PPP of the BS PCP. Motivated by this novel analytical approach,
in this chapter we provide the complete coverage analysis for max-power based association
strategy for the unified HetNet model introduced in [79].

4.1.2 Contributions
We derive the coverage probability of a typical user of a unified K-tier HetNet in which

the spatial distributions of K1 BS tiers are modeled as PCPs and K2 BS tiers are modeled
as PPPs (K1 + K2 = K). The PCP assumption for the BS tier introduces spatial coupling
among the BS locations. We consider two types of users in this network, Type 1: users
having no spatial coupling with the BSs, and Type 2: users whose locations are coupled
with the BS locations. For Type 1, the user locations are modeled as a stationary point
process independent of the BS point processes. For Type 2, the coupling between user and
BS locations is incorporated by modeling the user locations as a PCP with each user cluster
sharing the same cluster center with a BS cluster. The key contributions are highlighted
next.

Exact coverage probability analysis. Assuming that a user connects to the BS offering the
maximum average received power, we provide an exact analysis of coverage probability for a
typical user which is an arbitrarily selected point from the user point process. The key enabler
of the coverage probability analysis is a fundamental property of PCP that conditioned on
the parent PPP, the PCP can be viewed as an inhomogeneous PPP, which is a relatively
more tractable point process compared to PCP. Using this property, we condition on the
parent PPPs of all the BS PCPs and derive the conditional coverage probability. Finally,
while deconditioning over the parent PPPs, we observe that the coverage probability can be
expressed as the product of PGFLs and sum-product functionals of the parent PPPs. This
analytical formulation of coverage probability in terms of known point process functionals
over the parent PPPs is the key contribution of the chapter and yields an easy-to-compute
expression of coverage probability under max-power based association. We then specialize the
coverage probability for two instances when the PCPs associated with the BSs are either (i)
Thomas cluster process (TCP), where the offspring points are normally distributed around
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the cluster center, or (ii) MCP, where the offspring points are distributed uniformly at
random within a disc centered at the cluster center.

System-level insights. Using the analytical results, we study the impact of spatial param-
eters such as cluster size, average number of points per cluster and BS density on the coverage
probability. Our numerical results demonstrate that the variation of coverage probability
with cluster size has conflicting trends for Cases 1 and 2: for Type 1, coverage decreases as
cluster size increases, and for Type 2, coverage increases as cluster size decreases. As cluster
size increases, the coverage probabilities under Type 1 and Type 2 approach the same limit
which is the well-known coverage probability of the PPP-based K-tier HetNet [22], but from
two opposite directions. Our numerical results demonstrate that the impact of the variation
of cluster size on coverage probability is not as prominent in Type 2 as in Type 1.

4.2 System Model
4.2.1 PCP preliminaries

Before we introduce the proposed PCP-based system model for K-tier HetNet, we pro-
vide a formal introduction to PCP.

Definition 4.1 (Poisson Cluster Process). A PCP Φ(λp, g, m̄) in R2 can be defined as:

Φ(λp, g, m̄) =
⋃

z∈Φp(λp)

z + Bz, (4.1)

where Φp = Φ(λp) is the parent PPP with intensity λp and Bz denotes the offspring point
process corresponding to a cluster center at z ∈ Φp where {s ∈ Bz} is an independently and
identically distributed (i.i.d.) sequence of random vectors with probability density function
(PDF) g(s). The number of points in Bz is denoted by M , where M ∼ Poisson(m̄).

Notation. While we reserve the symbol Φ to denote any point process, to indicate
whether it is a PCP or PPP we specify the parameters in parentheses accordingly, i.e.,
Φ(λp, g, m̄) denotes a PCP according to Definition 5.1 and Φ(λ) denotes a PPP with intensity
λ.

A PCP can be viewed as a collection of offspring process Bz translated by z for each
z ∈ Φp. Then the sequence of points {t} ≡ z + Bz is conditionally i.i.d. with PDF f(t|z) =
g(t − z). Note that the conditional distribution of the point coordinates given its cluster
center at z is equivalent to translating a cluster centered at the origin to z. For a PCP, the
following result can be established.

Proposition 4.2. Conditioned on the parent point process Φp, Φ(λp, g, m̄) is an inhomoge-
neous PPP with intensity

λ(x) = m̄
∑

z∈Φp

f(x|z). (4.2)
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Table 4.1: List of Notations.

K Index set of all BS tiers (|K| = K)
K1,K2 Index set of all BS tiers modeled as PCP and PPP

Φk = Φ(λpk , gk, m̄k) The point process of the kth BS tier, k ∈ K1, which is a PCP.
Φk = Φ(λk) The point process of the kth BS tier, k ∈ K2, which is a PPP.

Pk Transmit power of a BS in Φk

α Path-loss exponent (α > 2)
τk Coverage threshold of Φk

P̄j,k (Pj/Pk)
1/α

fdk(·|z) Conditional PDF of distance of a point of Φk (k ∈ K1)
from origin given its cluster center is located at z (z = ‖z‖)

fck(·), Fck(·) PDF and CDF of contact distance of Φk

Cj,k(r, z) exp
(
−m̄k

(
1−

∫∞
P̄j,k

(1 + τkPkr
α

Pk
yα)−1fdj(y|z)dy

))

ρ(τi, α) 1 + τ
2/α
i

∞∫

τ
−2/α
i

1
1+tα/2

dt = 1 + 2τi
α−2 2F1

[
1, 1− 2

α
; 2− 2

α
;−τi

]

Proof. While one can prove this result for a more general setting of Cox processes (see [13]),
we prove this result for PCP for completeness as follows. Let NΦ be the random counting
measure associated with the point process Φ. Then, for a Borel set A ∈ B(R2), where B(R2)
is the Borel σ-algebra on R2, NΦ(A) is a random variable denoting the number of points of
Φ falling in A. First it is observed that for Bz, NBz(A) ∼ Poisson(m̄

∫
A
f(y|z)dy) since the

probability generating function (PGF) of NBz(A) is

E
[
θNBz (A)

]
= E

[
θ
∑M
i=1 1(si∈A)

]
= E

[
M∏

i=1

θ1(si∈A)

]
(a)
= E

[
M∏

i=1

E
[
θ1(si∈A)

]
]

(b)
= E

[
M∏

i=1

(
1− (1− θ)

∫

A

f(y|z)dy

)]
= E

[(
1− (1− θ)

∫

A

f(y|z)dy)

)M]

(c)
= exp

(
−m̄

∫

A

f(y|z)dy (1− θ)
)
,

where si denotes the ith point of Bz. Here (a) follows from the fact that the offspring
points are i.i.d. around the cluster center at z, (b) and (c) are obtained by using the PGF of
Bernoulli and Poisson distributions, respectively. Hence NBz(A) ∼ Poisson(m̄

∫
A
f(y|z)dy).

Now, conditioned on Φp the PGF of NΦ(A) is expressed as:

E[θNΦ(A)|Φp] = E
[
θ

∑
z∈Φp

NBz (A)
∣∣∣∣Φp

]
= E


∏

z∈Φp

θNBz (A)|Φp


 (a)

=
∏

z∈Φp

E
[
θNBz (A)|Φp

]
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(a) Type 1 (b) Type 2

Figure 4.1: An illustration of the a two-tier HetNet, where Φ1 is a PCP of SBSs (illustrated
as black dots) and Φ2 is a PPP of MBSs (illustrated as squares). The users (points of Φu)
are illustrated as red dots. In (a), Φu is a PPP, and in (b), Φu is a PCP with the same parent
PPP as that of Φ1.

(b)
=
∏

z∈Φp

exp

(
−m̄

∫

A

f(y|z)dy(1− θ)
)

= exp


−m̄

∑

z∈Φp

∫

A

f(y|z)dy(1− θ)


 ,

where (a) follows from the fact that conditioned on Φp, {Bz} is sequence of i.i.d. offspring
point processes, (b) is obtained by substituting the PGF of NBz(A). Hence it is observed
that NΦ(A)|Φp ∼ Poisson

(
m̄
∑

z∈Φp

∫
A
f(y|z)dy

)
. Thus Φ|Φp is an inhomogeneous PPP

with intensity measure Λ(A) = m̄
∑

z∈Φp

∫
A
f(y|z)dy.

4.2.2 K-tier HetNet model
We assume a K-tier HetNet where BSs of each tier are distributed as a PPP or PCP.

Let K1 and K2 denote the index sets of the BS tiers which are modeled as PCP and PPP,
respectively, with |K1∪K2| = K and K1∩K2 = ∅. We denote the point process of the kth BS
tier as Φk, where Φk is either a PCP i.e. Φ(λpk , gk, m̄k) (∀k ∈ K1) where Φpk = Φ(λpk) is the
parent PPP or a PPP Φ(λk) (∀k ∈ K2). Also define fk(x|z) = gk(x−z), ∀ k ∈ K1. Each BS
of Φk transmits at constant power Pk. We assume that the users are distributed according
to a stationary point process Φu. We now consider two types of users in the network.

case 1: No user-BS coupling. The first type of users are uniformly distributed over the
network, such as, the pedestrians and users in transit, and their locations are independent
of the BS locations. There is no restriction on the distribution of these users as long as the
distribution is stationary. For instance, one way of modeling the locations of these users is
to assume that they are distributed as a homogeneous PPP.
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case 2: User-BS coupling. The second type of users are assumed to form spatial
clusters (also called user hotspots) and their locations can be modeled as a PCP Φu =
Φ(λpu , gu, m̄u) [71, 79]. When the users are clustered, we also assume that one BS tier (say,
the qth tier, q ∈ K1) is deployed to serve the user hotspots, thus introducing coupling between
Φu and Φq. In other words, Φu and Φq are two PCPs having same parent PPP Φpq ≡ Φpu .
Hence conditioned on Φpq , Φu and Φq are (conditionally) independent but not identically
distributed. This assumption is motivated by the way SBSs are placed at higher densities
in the locations of user hotspots in 3GPP simulation models of HetNets [2, 3].

Remark 4.3. For case 1, Φu can be any general stationary point process including PPP and
for case 2, we do not specify m̄u of Φu, since m̄u does not appear explicitly in the coverage
analysis. However, these specifications of Φu are required when one has to characterize other
metrics like BS load and rate coverage probability [24,37]. Further, the coverage probability
analysis that follows can be extended for a general user distribution which is the superposition
of PPP and PCPs along similar lines to [71].

In Fig. 7.1, we provide an illustration of the system model. For both types of user
distributions, we perform our analysis for a typical user which corresponds to a point selected
uniformly at random from Φu. Since Φu is stationary, the typical user is assumed to be
located at the origin without loss of generality. For case 1, since Φu and Φk, ∀ k ∈ K are
independent, the selection of the typical user does not bias the distribution of Φk. However,
for case 2, the selection of the typical user affects the BS point process Φq due to the
existence of user-BS coupling. We assume that the typical user belongs to a cluster centered
at z0. By construction, Φq is always conditioned to have a cluster centered at z0. Hence, the
typical user will see the palm version of Φq which, by Slivnyak’s theorem, is equivalent to
the superposition of Φq and z0 + Bz0 where Φq and z0 + Bz0 are independent. For case 2,
we modify Φq as Φq = Φ(λpq , gq, m̄q) ∪ z0 + Bz0 . Consequently, the underlying parent point
process is modified as Φpq = Φ(λpq)∪{z0}. The BS cluster Bz0 is termed as the representative
cluster.

Considering the typical user at origin, the downlink power received from a BS at x ∈ Φk

is expressed as Pkhx‖x‖−α, where hx and α denote the small scale fading and path-loss
exponent, respectively. We assume that each link undergoes Rayleigh fading, hence {hx}
is a sequence of i.i.d. random variables with hx ∼ exp(1). The user connects to the BS
providing the maximum received power averaged over fading. Thus, if x∗ is the location of
the serving BS, then, x∗ = arg max{x̃k,k∈K} Pk‖x̃k‖−α, where x̃k = arg maxx∈Φk Pk‖xk‖−α =
arg minx∈Φk ‖x‖ is the location of candidate serving BS in Φk. Note that the candidate
serving BS in Φk is the BS in Φk which is geometrically closest to the user. We first define
the association event corresponding to the ith tier as the event that the serving BS belongs
to Φi, denoted as Si = {x∗ = x̃i}. Conditioned on Si, the SINR experienced by the typical
user is

SINR(x∗) =
Pihx∗‖x∗‖−α

N0 +
∑
j∈K

∑
x∈Φj\{x∗} Pjhx‖x‖−α

, (4.3)
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where N0 is the thermal noise power. We define the coverage probability as the probability
of the union of K mutually exclusive coverage events

Pc = P

(⋃

i∈K

{SINR(x∗) > τi,Si}
)

=
∑

i∈K

P (SINR(x∗) > τi,Si) , (4.4)

where we call the ith term under the summation as the ith tier coverage probability which is
the joint probability of the events Si and {SINR(x∗) > τi}. Here τi is the SINR threshold for
the ith tier required for successful demodulation and decoding of the received signal.

4.3 Coverage probability analysis
We begin our coverage analysis by first conditioning on every parent PPP, i.e., Φpk , ∀ k ∈

K1. Following Proposition 4.2, Φk|Φpk will be inhomogeneous PPP with intensity λk(x) =
m̄k

∑
z∈Φpk

fk(x|z). A slightly different situation occurs for Φq in case 2. However, once
Φpq is modified by adding a point at z0 to the original parent PPP, Φq|Φpq again becomes
an inhomogeneous PPP with intensity m̄q

∑
z∈Φpq∪{z0} fq(x|z).

Notation. To denote the distance of a point y ∈ R2, we use y and ‖y‖ interchangeably.

4.3.1 Contact distance distribution
First we will derive the distribution of ‖x̃k‖, k ∈ K, or the distance distribution of

the candidate serving BS of tier k. Since ‖x̃k‖ is the nearest BS to the typical user which
is at origin, the distribution of ‖x̃k‖ is the same as the contact distance distribution of
Φk, denoted as fck(r|Φpk). Let fdk(r|z) and Fdk(r|z) denote the PDF and CDF of the
distance of a randomly selected point of Φk (k ∈ K1) given its cluster center is located at
z. Before presenting the contact distance distributions, we observe the following property of
the conditional distance distribution.

Lemma 4.4. If the offspring points are isotropically distributed around the cluster center i.e.,
the radial coordinates of the offspring points with respect to the cluster center have the joint
PDF gk(s, θs) = gk(1)(s)

1
2π
, where gk(1)(·) is the marginal PDF of the radial coordinate, then,

fdk(r|z) = fdk(r|z) and Fdk(r|z) = Fdk(r|z). That is, the conditional distance distribution
depends only on the magnitude of z.

Proof. Let x ∈ Φk is the location of the point whose cluster center is located at z. Then,

Fdk(r|z) = P(‖x‖ < r|z) =

∫

b(0,r)

gk(x− z)dx

=

2π∫

0

1

2π

r∫

0

gk(1)(
√
x2 + z2 − 2xz cos(θx − θz))xdxdθx
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=

2π+θz∫

θz

1

2π

r∫

0

gk(1)(
√
x2 + z2 − 2xz cos θ)xdxdθ.

Here b(0, r) denotes a disc of radius r centered at the origin. Differentiating with respect to
r,

fdk(r|z) =

2π+θz∫

θz

1

2π
gk(1)(

√
r2 + z2 − 2rz cos θ)rdθ. (4.5)

Since the region of the integral over θ is the perimeter of the disc b(0, z), it is independent
of the choice of θz.

We now characterize the PDF of ‖x̃k‖.

Lemma 4.5. For k ∈ K1, conditioned on Φpk , the PDF and CDF of ‖x̃k‖ are given as:

fck(r|Φpk) = m̄k

∑

z∈Φpk

fdk(r|z)
∏

z∈Φpk

exp (−m̄kFdk(r|z)) , r ≥ 0, (4.6)

and

Fck(r|Φpk) = 1− exp

(
− m̄k

∑

z∈Φpk

r∫

0

fdk(y|z)dy

)
, r ≥ 0. (4.7)

Proof. For k ∈ K1, the CDF of ‖x̃k‖ is

Fck(r|Φpk) = 1− P(Φ(b(0, r)) = 0|Φpk)

= 1− exp

(
−
∫

b(0,r)

λk(x)dx

)

= 1− exp

(
− m̄k

∑

z∈Φpk

∫

b(0,r)

fk(y|z)dy

)

= 1− exp

(
− m̄k

∑

z∈Φpk

r∫

0

fdk(y|z)dy

)
.

The last step is due the fact that integrating a joint PDF of polar coordinates over b(0, r) is
equivalent to integrating the marginal PDF of radial coordinate over (0, r]. The final result
in (4.6) can be obtained by differentiating the CDF with respect to r.

Note that one can obtain the PDF of the contact distance of PCP by deconditioning
fck(r|Φpk) over Φpk [90]. This is an alternative approach to the one presented in [73, 74] for
the derivation of contact distance distribution of PCP.
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When Φk is a PPP, i.e., k ∈ K2, the distribution of ‖x̃k‖ is the well-known Rayleigh
distribution, given by:

fck(r) = 2πλkr exp(−πλkr2), Fck(r) = 1− exp(−πλkr2), r ≥ 0. (4.8)

4.3.2 Association probability and serving distance distribution
We define association probability to the ith tier as P(Si). The association probability is

derived as follows.

Lemma 4.6. Conditioned on Φpk ,∀ k ∈ K1, the association probability to the ith tier is
given by: P(Si|Φpk ,∀ k ∈ K1) =

m̄i

∫ ∞

0

∑

z∈Φpi

fdi(r|z)
∏

j1∈K1

∏

z∈Φpj1

exp
(
−m̄j1Fdj1

(
P̄j1,ir|z

)) ∏

j2∈K2

exp
(
−πλj2P̄ 2

j2,i
r2
)

dr,

if i ∈ K1, (4.9a)

2πλi

∫ ∞

0

∏

j1∈K1

∏

z∈Φpj1

exp
(
−m̄j1Fdj1

(
P̄j1,ir|z

)) ∏

j2∈K2

exp
(
−πλj2P̄ 2

j2,i
r2
)
rdr, if i ∈ K2, (4.9b)

where P̄j,i = (Pj/Pi)
1/α.

Proof. When i ∈ K1,

P(Si|Φpk , ∀ k ∈ K1) = P


 ⋂

j∈K\{i}

Pi‖x̃i‖−α > Pj‖x̃j‖−α
∣∣∣∣Φpk ,∀ k ∈ K1




=
∏

j1∈K1\{i}

P

(
‖x̃j1‖ >

(
Pj1
Pi

)1/α

‖x̃i‖
∣∣∣∣Φpi ,Φpj1

) ∏

j2∈K2

P

(
‖x̃j2‖ >

(
Pj2
Pi

)1/α

‖x̃i‖
∣∣∣∣Φpi

)

(a)
=

∫ ∞

0

∏

j1∈K1\{i}

F̄cj1

((
Pj1
Pi

)1/α

r

∣∣∣∣Φpj1

) ∏

j2∈K2

F̄cj2

((
Pj2
Pi

)1/α

r

)
fci(r|Φpi)dr

(b)
=

∫ ∞

0

∏

j1∈K1\{i}

∏

z∈Φpj1

exp

(
−m̄j1Fdj1

((
Pj1
Pi

)1/α

r

∣∣∣∣z
)) ∏

j2∈K2

exp

(
−πλj2

(
Pj2
Pi

)2/α

r2

)
×

m̄i

∑

z∈Φpi

fdi(r|z)
∏

z∈Φpi

exp (−m̄iFdi(r|z)) dr

= m̄i

∫ ∞

0

∑

z∈Φpi

fdi(r|z)
∏

j1∈K1

∏

z∈Φpj1

exp

(
−m̄j1Fdj1

((
Pj1
Pi

)1/α

r

∣∣∣∣z
))
×
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exp

(
−π

∑

j2∈K2

λj2

(
Pj2
Pi

)2/α

r2

)
dr.

Here (a) follows from the fact that Φi-s are independent, (b) follows from Lemma 4.5, and
F̄cj(·) denotes the complementary CDF (CCDF) of ‖x̃j‖. When i ∈ K2,

P(Si|Φpk ,∀ k ∈ K1)

=
∏

j1∈K1

P

(
‖x̃j1‖ >

(
Pj1
Pi

)1/α

‖x̃i‖
∣∣∣∣Φpj1

) ∏

j2∈K2\{i}

P

(
‖x̃j2‖ >

(
Pj2
Pi

)1/α

‖x̃i‖
)

=

∫ ∞

0

∏

j1∈K1

F̄cj1

((
Pj1
Pi

)1/α

r

∣∣∣∣Φpj1

) ∏

j2∈K2\{i}

F̄cj2

((
Pj1
Pi

)1/α

r

)
fci(r)dr

= 2πλi

∫ ∞

0

∏

j1∈K1

∏

z∈Φpj1

exp

(
−m̄j1Fdj1

((
Pj1
Pi

)1/α

r

∣∣∣∣z
))
×

exp

(
−π

∑

j2∈K2

λj2

(
Pj2
Pi

)2/α

r2

)
rdr,

where the last step follows from Lemma 4.5.

We now derive the PDF of the conditional serving distance i.e. ‖x∗‖ given Si and
Φpk ,∀ k ∈ K1.

Lemma 4.7. The PDF of ‖x∗‖ conditioned on association to the ith tier and Φpk ,∀ k ∈ K1

is given as: fsi(r|Si,Φpk ,∀ k ∈ K1) =

m̄i

P(Si|Φpk ,∀ k ∈ K1)

∑

z∈Φpi

fdi(r|z)
∏

j1∈K1

∏

z∈Φpj1

exp
(
−m̄j1Fdj1

(
P̄j1,ir|z

))
×

∏

j2∈K2

exp
(
−πλj2P̄ 2

j2,i
r2
)
, r ≥ 0, if i ∈ K1, (4.10a)

2πλi
P(Si|Φpk ,∀ k ∈ K1)

∏

j1∈K1

∏

z∈Φpj1

exp
(
−m̄j1Fdj1

(
P̄j1,ir|z

)) ∏

j2∈K2

exp
(
−πλj2P̄ 2

j2,i
r2
)
r,

r ≥ 0, if i ∈ K2. (4.10b)

Proof. The conditional CCDF of ‖x∗‖ given Si and Φpk ,∀ k ∈ K1: is given by:

F̄si(r|Si,Φpk ,∀ k ∈ K1) = P(‖x∗‖ > r|Si,Φpk ,∀ k ∈ K1) = P(‖x̃i‖ > r|Si,Φpk , ∀ k ∈ K1)
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=
P(‖x̃i‖ > r,Si|Φpk ,∀ k ∈ K1)

P(Si|Φpk ,∀ k ∈ K1)
.

Now

P(‖x̃i‖ > r,Si|Φpk , ∀ k ∈ K1) = P


 ∏

j∈K\{i}

Pi‖x̃i‖−α > Pj‖x̃j‖−α, ‖x̃i‖ > r|Φpk , ∀ k ∈ K1


 .

This expression is similar to the expression appearing in the computation of association
probability with the additional event that ‖x̃i‖ > r which can be handled by changing the
lower limit of the integral in (4.9). The final step is to differentiate the CCDF with respect
to r.

4.3.3 Coverage probability
Before deriving the main results on coverage probability, we first introduce PGFL and

sum-product functional of a point process which will be appearing repeatedly into the cov-
erage analysis.

Definition 4.8 (PGFL). PGFL of a point process Φ is defined as: E
[ ∏
x∈Φ

µ(x)

]
, where

µ(x) : R2 → [0, 1] is measurable.
Lemma 4.9. When Φ(λ(x)) is a PPP, the PGFL is given as [13]:

E

[∏

x∈Φ

µ(x)

]
= exp


−

∫

R2

λ(x)(1− µ(x))dx


 . (4.11)

When µ(x) = µ(x) and Φ(λ) is homogeneous, then (4.11) becomes:

E

[∏

y∈Φ

µ(y)

]
= exp


−2πλ

∞∫

0

(1− µ(y))ydy


 . (4.12)

Definition 4.10 (Sum-product functional). Sum-product functional of a point process Φ is

defined in this chapter as E

[
∑
x∈Φ

ν(x)
∏
y∈Φ

µ(y)

]
, where ν(x) : R2 → R+ and µ(y) : R2 →

[0, 1] are measurable.

For a PPP, the sum-product functional is given by the following Lemma.
Lemma 4.11. When Φ(λ(x)) is a PPP, the sum-product functional is given as [75,79]

E

[∑

x∈Φ

ν(x)
∏

y∈Φ

µ(y)

]
=

∫

R2

λ(x)ν(x)µ(x)dx exp


−

∫

R2

λ(y)(1− µ(y))dy


 . (4.13)
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When ν(x) ≡ ν(x), µ(x) ≡ µ(x), and Φ(λ) is homogeneous, then (4.13) becomes:

E

[∑

x∈Φ

ν(x)
∏

y∈Φ

µ(y)

]
= 2πλ

∞∫

0

ν(x)µ(x)xdx exp


−2πλ

∞∫

0

(1− µ(y))ydy


 . (4.14)

Before providing the final expression of coverage probability, we provide an important in-
termediate expression of the conditional ith tier coverage probability given all parent point
processes. In fact, a key contribution of this chapter, as will be evident in sequel, is to
show that this conditional coverage probability can be factored as a product of standard
functionals (such as PGFL and sum-product functional) of the parent PPPs.

Lemma 4.12. The ith tier coverage probability given Φpk ,∀ k ∈ K1 is given by P(SINR(x∗) >
τi,Si|Φpk ,∀ k ∈ K1) =

m̄i

∞∫

0

exp

(
−τiN0r

α

Pi

) ∏

j1∈K1\{i}

∏

z∈Φpj1

Cj1,i(r, z)
∏

j2∈K2

exp
(
−πr2λj2P̄

2
j2,i
ρ(τi, α)

)
×


∑

z∈Φpi

fdi(r|z)
∏

z∈Φpi

Ci,i(r, z)


 dr,when i ∈ K1, (4.15a)

2πλi

∞∫

0

exp

(
−τiN0r

α

Pi

) ∏

j1∈K1

∏

z∈Φpj1

Cj1,i(r, z)×

∏

j2∈K2

exp
(
−πr2λj2P̄

2
j2,i
ρ(τi, α)

)
rdr,when i ∈ K2, (4.15b)

where

Cj,k(r, z) = exp


−m̄j


1−

∞∫

P̄j,kr

fdj(y|z)

1 + τk
(P̄j,kr)

α

yα

dy





 , (4.16)

and, ρ(τi, α) = 1 + τ
2/α
i

∞∫

τ
−2/α
i

1
1+tα/2

dt = 1 + 2τi
α−2 2F1

[
1, 1− 2

α
; 2− 2

α
;−τi

]
, where 2F1 is the

Gauss hypergeometric function [22].

Proof. We first compute the probability of the ith coverage event given Φpk ,∀ k ∈ K1 as
follows.

P(SINR(x∗) > τi,Si|Φpk ,∀ k ∈ K1) = P(Si|Φpk ,∀ k ∈ K1)P(SINR(x∗) > τi|Si,Φpk ,∀ k ∈ K1),
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where P(SINR(x∗) > τi|Si,Φpk ,∀ k ∈ K1) =

P


 Pihx∗‖x∗‖−α
N0 +

∑
j∈K

∑
y∈Φj\{x∗}

Pjhy‖y‖−α
> τi

∣∣∣∣Si,Φpk ,∀ k ∈ K1




= P


hx∗ >

τi‖x∗‖α
Pi


N0 +

∑

j∈K

∑

y∈Φj\{x∗}

Pjhy‖y‖−α


∣∣∣∣Si,Φpk ,∀ k ∈ K1




(a)
= E


exp


−τi‖x

∗‖α
Pi


N0 +

∑

j∈K

∑

y∈Φj\{x∗}

Pjhy‖y‖−α




∣∣∣∣Si,Φpk ,∀ k ∈ K1




= E


exp

(
−τiN0‖x∗‖α

Pi

)∏

j∈K

∏

y∈Φj\{x∗}

exp

(
−τiPjhy

Pi

‖x∗‖α
‖y‖α

) ∣∣∣∣Si,Φpk ,∀ k ∈ K1




(b)
= E


exp

(
−τiN0‖x∗‖α

Pi

)∏

j∈K

∏

y∈Φj\{x∗}

Ehy
[
exp

(
−τiPjhy

Pi

‖x∗‖α
‖y‖α

)] ∣∣∣∣Si,Φpk ,∀ k ∈ K1




(c)
= E


exp

(
−τiN0‖x∗‖α

Pi

)∏

j∈K

∏

y∈Φj∩
b(0,P̄j,i‖x∗‖)

c

1

1 +
τiPj
Pi

‖x∗‖α
‖y‖α

∣∣∣∣Si,Φpk ,∀ k ∈ K1




=

∞∫

0

exp

(
−τiN0r

α

Pi

) ∏

j1∈K1

EΦj1




∏

y∈Φj1∩b(0,P̄j1,ir)
c

1

1 +
τiPj1
Pi

rα

‖y‖α

∣∣∣∣Φpj1


×

∏

j2∈K2

EΦj2




∏

y∈Φj2∩b(0,P̄j2,ir)
c

1

1 +
τiPj2
Pi

rα

‖y‖α


 fsi (r|Si,Φpk ,∀ k ∈ K1) dr

=

∞∫

0

exp

(
−τiN0r

α

Pi

) ∏

j1∈K1

∏

z∈Φpj1

exp


−

∞∫

P̄j1,ir

m̄j1fdj1
(y|z)

(
1− 1

1 +
τiPj1
Pi

rα

yα

)
dy


×

∏

j2∈K2

exp


−2πλj2

∞∫

P̄j2,ir

(
1− 1

1 +
τiPj2
Pi

rα

yα

)
ydy


 fsi (r|Si,Φpk ,∀k ∈ K1) dr.

(4.16)

Here (a) follows from the fact that hx∗ ∼ exp(1), (b) follows from the assumption that all
links undergo i.i.d. fading, and (c) is justified since in Φj \{x∗}, there exists no points inside
the disc b(0, P̄j,i‖x∗‖), which is known as the exclusion disc. In the last step, we use the
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PGFL of PPP from Lemma 4.9. When i ∈ K1, substituting fsi (r|Si,Φpk ,∀ k ∈ K1) from
(4.10a), P(SINR(x∗) > τi,Si|Φpk ,∀ k ∈ K1) =

m̄i

∞∫

0

exp

(
−τiN0r

α

Pi

)
×

∏

j1∈K1

∏

z∈Φpj1

exp


−m̄j1Fdj1

(P̄j1,ir|z)− m̄j1

∞∫

P̄j1,ir

fdj1
(y|z)

(
1− 1

1 +
τiPj1
Pi

rα

yα

)
dy


×

exp


−2π

∑

j2∈K2

λj2

∞∫

P̄j2,ir

(
1− 1

1 +
τiPj2
Pi

rα

yα

)
ydy − π

∑

j2∈K2

λj2P̄
2
j2,i
r2



∑

z∈Φpi

fdi(r|z)dr

= m̄i

∞∫

0

exp

(
−τiN0r

α

Pi

) ∏

j1∈K1

∏

z∈Φpj1

exp


−m̄j1


1−

∞∫

P̄j1,ir

fdj1
(y|z)

1 +
τiPj1
Pi

rα

yα

dy





×

exp


−πr

2
∑

j2∈K2

λj2P̄
2
j2,i
τ

2/α
i

∞∫

τ
−2/α
i

1

1 + tα/2
dt− π

∑

j2∈K2

λj2P̄
2
j2,i
r2



∑

z∈Φpi

fdi(r|z)dr.

In the last step, we substitute τiPj2r
α

Piyα
= t−α/2. The final expression is obtained by some

algebraic simplification. When i ∈ K2, substituting fsi (r|Φpk , k ∈ K1) in (4.16) by (4.10b),
we get P(SINR(x∗) > τi,Si|Φpk ,∀ k ∈ K1) =

2πλi

∞∫

0

exp

(
−τiN0r

α

Pi

)
×

∏

j1∈K1

∏

z∈Φpj1

exp


−m̄j1Fdj1

(P̄j1,ir|z)− m̄j1

∞∫

P̄j1,ir

fdj1
(y|z)

(
1− 1

1 +
τiPj1
Pi

rα

yα

)
dy


×

exp


−

∑

j2∈K2

2πλj2

∞∫

P̄j2,ir

(
1− 1

1 +
τiPj2
Pi

rα

yα

)
ydy −

∑

j2∈K2

πλj2r
2

(
Pj2
Pi

)2/α


 rdr.

The final expression is obtained by some algebraic simplification.

Looking closely at the expressions of the ith tier coverage probability given Φpk ,∀ k ∈ K1,
we find two terms: (i)

∏
z∈Φpj1

Cj1,i(r, z) in (4.15a) and (4.15b), and (ii)
∑

z∈Φpi
fdi(r|z)

∏
z∈Φpi

Ci,i(r, z)
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in (4.15a). These two terms are respectively product and sum-product over all points of Φpk

which will be substituted by the PGFL and sum-product functional of Φpk while decond-
tioning over Φpk .

Remark 4.13. In order to apply PGFL and sum-product functional expressions of PPP
given by (4.12) and (4.14), respectively, we require the condition:

∞∫
0

log(|Cj1,i(r, z)|)zdz <

∞, ∀ j1 ∈ K1. In [90, Appendix B], it was shown that this condition always holds for the
form of Cj1,i(r, z) given by (4.16).

Until this point, all results were conditioned on Φpk ,∀ k ∈ K1. Remember that in
Section 4.2.2, we introduced two types of spatial interaction between the users and BSs.
Since, by construction, these two types differ only in Φpq for some q ∈ K1, we were able
to treat case 1 and case 2 within the same analytical framework. We now present the
final expression of Pc for the two types explicitly by deconditioning the conditional coverage
probability over Φpk ,∀ k ∈ K1 in the following Theorems.

Theorem 4.14 (case 1). The coverage probability is given as:

Pc =
K∑

i=1

P(SINR > τi,Si), (4.17)

where, the ith tier coverage probability, P(SINR > τi,Si) =

2πλpim̄i

∞∫

0

exp

(
−τiN0r

α

Pi

) ∏

j1∈K1

exp


−2πλpj1

∞∫

0

(1− Cj1,i(r, z)) zdz


×

exp

(
−πr2

∑

j2∈K2

λj2P̄
2
j2,i
ρ(τi, α)

)∫ ∞

0

fdi(r|z)Ci,i(r, z)zdz dr, for i ∈ K1, (4.18a)

2πλi

∞∫

0

exp

(
−τiN0r

α

Pi

) ∏

j1∈K1

exp


−2πλpj1

∞∫

0

(1− Cj1,i(r, z)) zdz


×

exp

(
−πr2

∑

j2∈K2

λj2P̄
2
j2,i
ρ(τi, α)

)
rdr, for i ∈ K2. (4.18b)

Proof. When i ∈ K1, we get from (4.15a),

P(SINR > τi,Si) = E [P(SINR > τi,Si|Φpk ,∀ k ∈ K1)] =
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m̄i

∞∫

0

exp

(
−τiN0r

α

Pi

) ∏

j1∈K1\{i}

EΦpj1


 ∏

z∈Φpj1

Cj1,i(r, z)


 exp

(
−πr2

∑

j2∈K2

λj2P̄
2
j2,i
ρ(τi, α)

)
×

EΦpi


∑

z∈Φpi

fdi(r|z)
∏

z∈Φpi

Ci,i(r, z)


 dr.

This step is enabled by the assumption that Φj-s are independent ∀ j ∈ K. The final
expression is obtained by substituting the PGFL of Φpk for k ∈ K1 \ {i} from (4.12) and the
sum-product functional of Φpi from (4.14). The final expression follows from some algebraic
simplifications. Now, for i ∈ K2, from (4.15b), we get

P(SINR > τi,Si) = 2πλi

∞∫

0

exp

(
−τiN0r

α

Pi

) ∏

j1∈K1

EΦpj1


 ∏

z∈Φpj1

Cj1,i(r, z)


×

exp

(
−πr2

∑

j2∈K2

λj2P̄
2
j2,i
ρ(τi, α)

)
rdr.

We then use the PGFL of Φpj1
from (4.12) to obtain the final expression.

Theorem 4.15 (case 2). The coverage probability Pc can be written as (4.17), where the
ith tier coverage probability is: P(SINR > τi,Si) =

2πλpim̄i

∞∫

0

exp

(
−τiN0r

α

Pi

) ∏

j1∈K1

exp


−2πλpj1

∞∫

0

(1− Cj1,i(r, z)) zdz


×

∞∫

0

Cq,i(r, z0)fdu(z0|0)dz0 exp

(
−πr2

∑

j2∈K2

λj2P̄
2
j2,i
ρ(τi, α)

)
×

∞∫

0

fdi(r|z)Ci,i(r, z)zdz dr, for i ∈ K1 \ {q}, (4.19a)

m̄q

∞∫

0

exp

(
−τqN0r

α

Pq

) ∏

j1∈K1

exp


−2πλpj1

∞∫

0

(1− Cj1,q(r, z)) zdz


×

exp

(
−πr2

∑

j2∈K2

λj2P̄
2
j2,q
ρ(τq, α)

)( ∞∫

0

fdq(r|z0)Cq,q(r, z0)fdu(z0|0)dz0

+ 2πλpq

∞∫

0

fdq(r|z)Cq,q(r, z)zdz

∞∫

0

Cq,q(r, z0)fdu(z0|0)dz0

)
dr, for i = q, (4.19b)
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2πλi

∞∫

0

exp

(
−τiN0r

α

Pi

) ∏

j1∈K1

exp


−2πλpj1

∞∫

0

(1− Cj1,i(r, z)) zdz


×

∞∫

0

Cq,i(r, z0)fdu(z0|0)dz0 exp

(
−πr2

∑

j2∈K2

λj2P̄
2
j2,i
ρ(τi, α)

)
rdr, for i ∈ K2. (4.19c)

Here fdu(z0|0) denotes the distance distribution of a point of Φu from its cluster center which
resides at origin.

Proof. When i ∈ K1 \ {q}, P(SINR > τi,Si) =

m̄i

∞∫

0

exp

(
−τiN0r

α

Pi

) ∏

j1∈K1\{i,q}

EΦpj1


 ∏

z∈Φpj1

Cj1,i(r, z)


×

EΦpq


 ∏

z∈Φpq

Cq,i(r, z)


 exp

(
−πr2

∑

j2∈K2

λj2P̄
2
j2,i
ρ(τi, α)

)
EΦpi


∑

z∈Φpi

fdi(r|z)
∏

z∈Φpi

Ci,i(r, z)


 dr.

As opposed to case 1, the product over all points of Φpq has to be handled explicitly. The
PGFL of Φpq for case 2 evaluated at Cq,i(r, z) is given by

E


 ∏

z∈Φpq

Cq,i(r, z)


 = E [Cq,i(r, z0)]E


 ∏

z∈Φ(λpq )

Cq,i(r, z)


 = E [Cq,i(r, z0)]×

exp

(
− 2πλpq

∞∫

0

(1− Cq,i(r, z))zdz

)
.

This step is enabled by the fact that z0 and Φ(λpq) are independent. Substituting µ(z) =
Cq,i(z, r) and proceeding on similar lines of the proof of Theorem 4.14, we obtain the final
expression. Also note that since the function of z0 under consideration is only dependent
on ‖z0‖ ≡ z0, while taking expectation over z0, it is sufficient to consider the magnitude
distribution of z0 which is denoted as fdu(z0|0). Now when i = q,

P(SINR > τi,Si) = m̄q

∞∫

0

exp

(
−τqN0r

α

Pq

) ∏

j1∈K1\{q}

EΦpj1


 ∏

z∈Φpj1

Cj1,q(r, z)


×

exp

(
−πr2

∑

j2∈K2

λj2P̄
2
j2,q
ρ(τq, α)

)
EΦpq


∑

z∈Φpq

fdq(r|z)
∏

z∈Φpq

Cq,q(r, z)


 dr,
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where the last term in the expression under integral is the sum-product functional over Φpq

which is computed as:

EΦpq


∑

z∈Φpq

fdq(r|z)
∏

z∈Φpq

Cq,q(r, z)


 = E

[
fdq(r|z0)Cq,q(r, z0)

]
EΦ(λpq )


 ∏

z∈Φ(λpq )

Cq,q(r, z)




+ EΦ(λpq )


∑

z∈Φpq

fdq(r|z)
∏

z∈Φpq

Cq,q(r, z)


E[Cq,q(r, z0)]

=

∞∫

0

fdq(r|z0)Cq,q(r, z0)fdu(z0|0)dz0 exp


−2πλpq

∞∫

0

(1− Cq,q(r, z))zdz




+ 2πλpq

∞∫

0

fdq(r|z)Cq,q(r, z)zdz exp


−2πλpq

∞∫

0

(1− Cq,q(r, z))zdz



∞∫

0

Cq,q(r, z0)fdu(z0|0)dz0

= exp


−2πλpq

∞∫

0

(1− Cq,q(r, z))zdz



( ∞∫

0

fdq(r|z0)Cq,q(r, z0)fdu(z0|0)dz0

+ 2πλpq

∞∫

0

fdq(r|z)Cq,q(r, z)zdz

∞∫

0

Cq,q(r, z0)fdu(z0|0)dz0

)
.

The final expression can be obtained by proceeding on similar lines of the proof of Theo-
rem 4.14. Now, for i ∈ K2, P(SINR > τi,Si) =

2πλi

∞∫

0

exp

(
−τiN0r

α

Pi

) ∏

j1∈K1\{q}

EΦpj1


 ∏

z∈Φpj1

Cj1,i(r, z)


×

EΦpq


 ∏

z∈Φpq

Cq,i(r, z)


 exp

(
−πr2

∑

j2∈K2

λj2P̄
2
j2,i
ρ(τi, α)

)
rdr.

Since expression is very similar to the expression of P(SINR > τi,Si) obtained for i ∈ K1\{q},
we omit the next steps leading to the final expression.

We conclude this discussion with the following remark.

Remark 4.16. The analytical framework developed in this Section provisions to model
the kth BS tier, where k ∈ K1 as any arbitrary PCP Φ(λpk , gk, m̄k). By looking into the
expressions of Pc in Theorems 4.14 and 4.15, it is apparent that given K1 PCPs with arbi-
trary distributions, i.e., {Φk = Φ(λpk , gk, m̄k), k ∈ K1}, the only non-trivial step is to find
the conditional distance distributions {fdk(x|z)} which need to be simply plugged into the
expressions of P(SINR > τi,Si) in (4.18)-(4.19).
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The unified model discussed in this chapter reduces to the conventional PPP-based
HetNet model with no spatial coupling between users and BS locations by setting K1 = ∅.
For this scenario, Type 2 becomes irrelevant and the coverage probability is given by the
following Corollary.

Corollary 4.17. Setting K1 = ∅, coverage probability for Type 1 is given by:

Pc =
∑

i∈K2

2πλi

∞∫

0

exp

(
−τiN0r

α

Pi

)
exp

(
−πr2

∑

j∈K2

λj2P̄
2
j,iρ(τi, α)

)
rdr, (4.20)

and, for interference-limited networks (N0 = 0),

Pc =
∑

i∈K2

λiP
2
α
i∑

j∈K2

λjP
2
α
j ρ(τi, α)

. (4.21)

Proof. This result can be obtained directly from (4.18b) by setting K1 = ∅. See [22, 32] for
the intermediate steps between (4.20) and (4.21).

4.3.4 Special cases: TCP and MCP
For the purpose of numerical evaluation of coverage probability, we assume that Φk is

either a TCP or an MCP which are defined as follows.

Definition 4.18 (Thomas Cluster Process). A PCP Φk (λpk , gk, m̄k) is called a TCP if the
distribution of the offspring points in Bz

k is Gaussian around the cluster center at the origin,
i.e. for all s ∈ Bz

k, if s = (‖s‖, arg(s)) ≡ (s, θs) ∈ Bz
k denotes a point of the offspring point

process Bz
k with cluster center at origin,

gk(s) = gk(s, θs) =
s

σ2
k

exp

(
− s2

2σ2
k

)
1

2π
, s ≥ 0, 0 < θs ≤ 2π. (4.22)

Definition 4.19 (Matérn Cluster Process). A PCP Φk (λpk , gk, m̄k) is called an MCP if the
distribution of the offspring points in Bz

k is uniform within a disc of radius rdk around the
origin denoted by b(0, rdk). Hence,

gk(s) = gk(s, θs) =
2s

r2
dk

× 1

2π
, 0 ≤ s ≤ rdk , 0 < θs ≤ 2π. (4.23)

We now provide the conditional distance distributions of TCP and MCP. When Φk is
a TCP, given that z is the cluster center of x, i.e., x ∈ z + Bz

k, we can write the conditional
PDF of x as [59]:

fdk(x|z) =
x

σ2
k

exp

(
−x

2 + z2

2σ2
k

)
I0

(
xz

σ2
k

)
, x, z ≥ 0, (4.24)
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where I0(·) is the modified Bessel function of the first kind with order zero, and,

fdk(x|0) =
x

σ2
k

exp

(
− x2

2σ2
k

)
, x ≥ 0. (4.25)

When Φk is an MCP, fdk(x|z) = χ
(`)
k (x, z), (` = 1, 2), where

χ
(1)
k (x, z) =

2x

r2
dk

, 0 ≤ x ≤ rdk − z, 0 ≤ z ≤ rdk , (4.26a)

χ
(2)
k (x, z) =

2x

πr2
dk

cos−1

(
x2 + z2 − r2

dk

2xz

)
, |rdk − z| < x ≤ rdk + z. (4.26b)

4.4 Results and discussions
We now numerically evaluate the expressions of Pc derived in Theorems 4.14 and 4.15.

For the numerical evaluation, we choose a two tier network (K = 2) with one tier of sparsely
deployed MBSs and another tier of densely deployed SBSs. The SBSs are distributed as a
PCP and the MBSs are distributed as a PPP, i.e., K1 = {1} and K2 = {2}. We assume
that the network is interference limited (N0 = 0) and the downlink transmit powers of each
BS in Φ1 and Φ2 are set such that P2/P1 = 103. Also, Φ1 is assumed to be denser than Φ2,
i.e., m̄1λp1 > λ2. We also assume α = 4 and τ1 = τ2 = τ . We first verify the analytical
results presented in Theorems 4.14 and 4.15 with Monte Carlo simulations of the network,
for which we set m̄1 = 4, λp1 = 25 km−2 and λ2 = 1 km−2. The values of Pc for different
values of τ from simulation and analysis are plotted in Fig. 4.2, where Fig. 4.2a and 4.2b
corresponds to Φ1 being TCP and MCP, respectively. The perfect match between simulation
and analytical results, indicated by small circles and curves, respectively, verifies the accuracy
of our analysis. The Matlab scripts of the analytical expressions presented in Theorems 4.14
and 4.15 as well as the Monte Carlo simulation of the two-tier HetNet are provided in [91].

Also note that Pc for Type 2 users is always greater than Pc for Type 1 users. This
ordering can be interpreted as follows. Due to the ergodicity of the network, coverage
probability can be alternatively defined as the fraction of users in the whole network that
can achieve SINR greater than a threshold (τ). Thus, the outage probability or (1 − Pc) is
a measure of the fraction of users on average who fail to meet the SINR threshold τ . These
users are more likely to be the ones who lie farther away from the serving BS. Thus, the
higher outage for Type 1 users compared to Type 2 users implies more number of users
receive SINR less than τ in Type 1 compared to Type 2 on average. The reason is that for
Type 1 users, since there is no spatial coupling between the user and BS locations, more
users lie farther away from their serving BSs on average. On the other hand, Type 2 users
will lie closer to their serving BSs on average because of the spatial coupling.
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Figure 4.2: Coverage probability as a function of SIR threshold (α = 4, P2 = 103P1, λ2 =
1 km−2, λp1 = 25 km−2, and m̄1 = 4).

4.4.1 Variation of cluster size
In Fig. 4.2, Pc is plotted for different cluster sizes of Φ1. The cluster size precisely

refers to σ1 when Φ1 is a TCP (in Fig. 4.2a) and rd1 when Φ1 is an MCP (in Fig. 4.2b).
We observe that the cluster size has a conflicting effect on Pc: for Type 1, Pc increases
with cluster size and for Type 2, Pc decreases with cluster size. This can be explained as
follows. In Type 2, due to the spatial coupling between Φ1 and Φu, the candidate serving
BS of Φ1 is more likely to belong to the representative cluster (i.e., the BS cluster with the
cluster center of the typical user) and as cluster size increases, this candidate serving BS
moves farther away from the user on average. On the other hand, for Type 1, as cluster
size increases, the BSs of Φ1 on average lie closer to the typical user. This phenomenon is
the consequence of the spatial coupling between BSs and users and is also observed for the
max-SINR based association strategy in the similar setup [79]. For both types, as cluster size
increases, Pc converges to the coverage probability for a two tier network with both BS tiers
being modeled as PPP, more precisely, K1 = ∅, K2 = {1, 2}, with intensities λ1 = m̄1λp1

and λ2, respectively. The reason for this convergence is the fact that as cluster size tends
to infinity, the limiting distribution of a PCP is a PPP [13]. Since the trends of Pc are very
similar for Φ1 being TCP and MCP, we set Φ1 as TCP for the rest of the discussion.

Another interesting observation from Fig. 4.2 is that the variation of Pc with cluster
size is not as prominent for Type 2 as it is for Type 1. For further investigation, we focus
on the scenario where Φ1 is a TCP, fix τ = 0 dB and plot the variation of Pc with σ1 in
Fig. 4.3. We observe that the Pc versus σ1 curves for Type 2 are almost flat. The reason
can be explained as follows. For Type 2, as cluster size is increased, the nearest BS of Φ1

belonging to the representative cluster lies farther away while the nearest BS of Φ1 which
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Figure 4.3: Coverage probability as a function of σ1 (α = 4, P2 = 103P1, λp1 = 25 km−2,
λ2 = 1 km−2, and τ = 0 dB).

does not belong to the representative cluster comes closer. Also, as cluster size increases, the
intra-cluster interference, i.e., the aggregate interference from the BSs of the representative
cluster decreases while the inter-cluster interference, i.e., the aggregate interference from the
BSs of Φ1 except the representative cluster increases. Due to these conflicting effects, the
cluster size variation do not impact Pc strongly for Type 2. On the other hand, for Type 1
these conflicts are not present because Φu and Φ1 are not coupled and hence there is no
representative BS cluster.

4.4.2 Variation of BS intensity
We now vary the intensity of the parent PPP (λp1) keeping λ2 constant and plot the

coverage probability in Fig. 4.4. For an interference-limited HetNet with the same SIR

threshold for all tiers, it is a well-known result that if the BSs are modeled as PPPs, Pc is
independent of the BS intensity. This can be readily verified by putting τi = τ ∀ i in (4.21)
which yields Pc = 1/ρ(τ, α). However, once the spatial distribution of BSs is changed to
PCP, we see that Pc is rather strongly dependent on the BS intensity under similar set of
assumptions. From Fig. 4.4, we also observe that for large values of λp1 , Pc converges to
1/ρ(τ, α), i.e., the coverage when the BSs are modeled as PPPs.

Remark 4.20. Although it is difficult to visualize the variation of Pc in the parameter space,
which for the two tier network under consideration is λp1×λ2× m̄1×σ1, using the results in
[92], it is possible to find the trajectories (known as equi-coverage contours) in the parameter
space along which Pc remains constant. The family of equicoverage contours are generated
by (λp1/l

2, λ2/l
2, σ1l) where l > 0 is a scalar. When Φ1 is an MCP, a similar result can be

obtained by replacing σ1 by rd1 .
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Figure 4.4: Coverage probability as a function of λp1/λ2 (α = 4, P2 = 103P1, τ = 0 dB, and
m̄1 = 10).

4.4.3 Variation of transmission power
We vary the transmission powers of the BSs of two tiers to observe its effect on coverage.

Since we assumed that the network is interference-limited, the transmission powers contribute
to Pc through ratios. Hence, for the two-tier setup it is sufficient to vary P2/P1 instead of
their absolute values. In Fig. 4.5, we have plotted Pc versus P2/P1 for the two types of
users. We first discuss the network behavior in two extremes of P2/P1 for which the two-tier
network is equivalent to a single tier network in terms of coverage. For instance, the network
Φ1 ∪ Φ2 is equivalent to Φ1 when P2/P1 → 0. Similarly, Φ1 ∪ Φ2 is equivalent to Φ2 when
P2/P1 →∞. Thus, for the two extreme cases of P2/P1, Pc of the two-tier network converges
to the Pc obtained by considering only Φ1 and Φ2. Since Φ2 is a PPP, it is obvious that
limP2/P1→∞ Pc = 1/(1 + ρ(τ, α)), which is the expression of Pc under the assumtion that the
BSs are distributed as a homogeneous PPP [22]. For the other side of the limit, i.e., when
P2/P1 → 0, we observe that Pc for Type 1 and Type 2 users deviate from each other: Pc
increases for Type 1 users and decreases for Type 2 users as P2/P1 → 0. Observing the
limiting values of Pc for Type 1 and Type 2 users, we conclude that the clustering of BS
locations improves the coverage for the users as long as the BS locations are coupled with
the user locations (as is the case for Type 2 users). However, if the users has no coupling
with the BS distributions (as is the case for Type 1 users), the clustering pattern in the BS
locations is detrimental for coverage.

4.4.4 Effect of adding BS tiers
In this Section, we investigate the effect of adding more BS tiers on the coverage prob-

ability of the network. Note that, if all tiers are modeled as PPPs (thus no spatial coupling
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Figure 4.5: Effect of transmission powers on coverage (α = 4, λp1 = 25 km−2, λ2 = 1 km−2,
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in the network), adding a new tier does not change Pc as long as the network is interference
limited [22]. However, this is not the case if at least one BS tier is modeled as a PCP. We
consider three network configurations, (i) a single tier network with K1 = {1} and K2 = ∅,
(ii) a two-tier network with K1 = {1} and K2 = {2}, and (iii) a three-tier network with
K1 = {1} and K2 = {2, 3}, where σ1 = 20 m. While Φ1 and Φ2 have the same configurations
as mentioned in Section 4.4.1, Φ3 is a homogeneous PPP with λ3 = 5 km−2 and P3 = 100P1.
As observed in Fig. 4.6, coverage changes with the addition of BS tiers: Pc increases for
Type 1 users and decreases for Type 2 users. For Type 1 users, the trend can be simply
explained as follows. More number of BS tier implies more number of candidate serving
BSs. Thus the power on the serving link increases more than the increase of the interference
power, on average. On the contrary, the Type 2 users will most likely connect to the BSs of
the same cluster because of the spatial coupling with Φ1. In that case, the addition of more
BSs will only contribute towards increasing the interference power. Even if they connect to
the BS of the other tier, the strong interference from the BSs of the representative cluster of
Φ1 will decrease the SINR.

4.4.5 Effect of clustering on the second BS tier
We consider another two-tier network configuration where both BS tiers are modeled

as PCPs, i.e., K1 = {1, 2}, K2 = ∅ and the Type 2 users share the same cluster centers
with Φ1. We plot Pc for different τ in Fig. 4.7a. We observe that Pc decreases as cluster size
(σ2) decreases for both the scenarios. To concretely demonstrate the effect of clustering of
Φ2 on Pc, we plot Pc for a fixed coverage threshold (τ = 0 dB) versus σ2 in Fig. 4.7b. Note
that neither Type 1 nor Type 2 users have any spatial coupling with the BS locations of
Φ2. Thus, from Fig 4.7, we can conclude that the BS clustering has a detrimental effect on
coverage if the user distribution has no spatial coupling with the BS distribution.

4.5 Summary
In this chapter, we developed an analytical framework for evaluating the coverage prob-

ability of a typical user in a K-tier HetNet where the locations of a fraction of BS tiers are
modeled as PCPs and the rest are modeled as PPPs. This work, along with our previous
work [79] (focused on max-SINR based association), provides a complete characterization of
downlink coverage probability in the unified HetNet model, which is an important general-
ization of the well-known baseline PPP-based model. To be consistent with 3GPP HetNet
models, we considered two types of user distribution: users that are placed independently
of the BS locations (Type 1 users), and users whose locations are spatially coupled with
the BS locations (Type 2 users). We captured this spatial coupling between the locations
of Type 2 users and BSs by modeling BS and user locations as two PCPs sharing the same
cluster centers. Our numerical results concretely reveal the implication of spatial coupling
of users and BS locations on coverage, such as Type 2 users experience better coverage than
the Type 1 users. We also found that denser BS clusters improve the coverage for Type 2
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Figure 4.7: Effect of clutering of the BSs in Φ2 on coverage (α = 4, P2 = 103P1, λp1 =
25 km−2, λp2 = 1 km−2, m̄1 = 4, m̄2 = 10).

users, but diminishes the coverage for Type 1 users. While BS densification is mostly as-
sumed to improve coverage, our results uncover a few special cases where addition of BS
tiers may not necessarily improve coverage. For instance, for Type 2 users who are already
spatially coupled with one BS tier, addition of BSs whose locations are not coupled with the
locations of this BS tier will actually diminish their coverage.

97



5

SIR Meta Distribution in the General
HetNet Model

5.1 Introduction

The last few years have seen two major enhancements in the baseline approach to the
modeling and analysis of cellular networks using stochastic geometry. (i) Enhancements in
the model: While the baseline network models relied on homogeneous point processPs to
model the spatial distribution of the BSs and users [32], the recent efforts have focused
on using more sophisticated point processes to capture the spatial couplings between the
locations of the BSs and users. A key set of works in this direction is based on the PCPs which
along with PPPs result in a more general HetNet model [93] with the PPP-based baseline
network model being its special case. (ii) Enhancements in the metrics: The conventional
analyses of HetNets using stochastic geometry have focused on the coverage probability which
is the complementary cumulative distribution function (CCDF) of the signal-to-interference-
and-noise-ratio (SINR). While coverage is a useful first-order metric, it does not provide
any information on the variation of SINR over the network. To obtain a more fine-gained
information on the SINR performance of the network, it is important to characterize the meta
distribution of SINR from which the SINR-coverage can be obtained as a special case [94].
While the meta distribution of SINR has been extensively studied for the baseline PPP-based
HetNet models, this characterization for the PCP-driven general HetNet model, proposed in
Chapter 4, is not known, which is the main objective of this chapter.

Prior Art. The coverage analysis of the PPP-based cellular models is fairly mature by now
(see [31,32] and the references therein). The meta distribution of SIR was first studied in [94]
for the Poisson bipolar and cellular networks. It was subsequently extended to the K-tier
PPP-based HetNet model in [95, 96]. On the modeling side, a more general HetNet model
based on the combination of PPPs and PCPs was recently proposed in [79, 93]. While this
model yields several spatial configurations of cellular network that are of practical interest
(including the baseline PPP-based model as its special case), its analytical treatment thus far
has been limited to the coverage probability. In this chapter, we derive the meta distribution
of the downlink SIR for this model.
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Contributions. In this chapter, we consider a general K-tier HetNet model where the
BSs and the user locations are modeled as either a PCP or a homogeneous PPP. For this
model, we characterize the meta distribution of downlink SIR of the typical user assuming
that the network is operating in an interference-limited regime and the typical user connects
to the BS providing maximum received power averaged over fading. To enable the analysis,
we construct an equivalent single tier cellular network by projecting the BS PPs in R2 on
the positive half line R+ that will have the same distribution of SIR as the original 2-D
K-tier network. Although the equivalence of the analyses using this single tier network in
R+ and the K-tier HetNet in R2 is quite well-known for the PPP-based model (see [36]),
this letter makes the first attempt to develop this approach for the new PCP-based HetNet
models. While this alternate analytical framework for the general HetNet model is novel in
its own right, we use this framework to derive the exact analytical expressions of the b-th
moment of the conditional success probability for the typical user under Rayleigh fading. The
exact expression of the meta distribution being computationally infeasible, we use the b-th
moments to provide an accurate beta approximation of the CCDF of the meta distribution.

5.2 System model
We model a HetNet as aK-tier cellular network in which BSs in the i-tier are distributed

as a point process {x} ≡ Φi ⊂ R2 and transmit with power Pi, which is assumed to be fixed
for all the BSs in Φi. The point process Φi is either a homogenous PPP with intensity λi
or a PCP. We denote the index sets of the BS tiers being modeled as PPP and PCP by K1

and K2, respectively with |K1|+ |K2| = K. While PPP, used as a baseline spatial model for
cellular networks [32] needs no introduction, we define PCP for completeness as follows.

Definition 5.1. A PCP Φi(λpi , m̄i, fi) for i ∈ K2 is defined as:

Φi(λpi , m̄i, fi) =
⋃

z∈Φpi

z + Bz
i ,

where Φpi is the parent PPP with intensity λpi and Bz
i is the offspring point process. The

offspring point process is a sequence of independently and identically distributed (i.i.d.)
random variables with probability density function (PDF) fi(s). The number of points in
Bz
i is Poisson distributed with mean m̄i.

We further assume that the offspring points are isotropically distributed around the
cluster center. Thus the joint PDF of the radial coordinates of the offspring points with
respect to the cluster center is denoted as: fi(s, θs) = fi(1)(s)

1
2π
. That said, the PDF of

the distance of a point of Φi from the origin given its cluster center at z ∈ Φpi is given
by: fdi(r|z) = fdi(r|z), where ‖z‖ = z. For the numerical results, we choose a special
case of PCP, known as Thomas cluster process (TCP) where the offspring points in Bz are
distributed normally around the origin, i.e., fi(s) = 1

σ2
i

exp
(
−‖s‖2

2σ2
i

)
. Here σ2

i is the cluster
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variance. When Φi is a TCP, the conditional distance distribution given ‖z‖ = z is Rician
with PDF:

fdi(x|z) =
x

σ2
i

e
−x

2+z2

2σ2
i I0

(
xz

σ2
i

)
, x, z ≥ 0, i ∈ K2, (5.1)

where I0(·) is the modified Bessel function of the first kind with order zero. We now focus
on the user point process which is denoted as Φu. We consider two types of users in the
network:

• Type 1 (independent user and BS PPs): Φu follows a stationary distribution indepen-
dent of the BS PPs.

• Type 2 (coupled user and BS PPs): Φu is a PCP with the same parent point process
as that of Φq for some q ∈ K2 with cluster variance σ2

q .

We now focus on the typical user in this network. Since the network is stationary, we can
assume that the typical user is located at the origin. It should be noted that the selection
of the typical user in Type 2 implies the selection of a cluster of Φq as well. We denote
the center of this BS cluster by z0. As a consequence, Φq is always conditioned on having a
cluster z0 +Bz0

q . Thus the typical user perceives the palm version of Φq, which, by Slivnyak’s
theorem [13] is equivalent to Φq ∪ z0 + Bz0

q where Φq and z0 + Bz0
q are independent. For

Type 1 users, this construction does not arise since the selection of the typical user does
not impose any restriction on the BS distributions. In order to unify the analyses of Type 1
and Type 2 users, we define Φ0 as a set of BSs whose locations are coupled with that of the
typical user as follows:

Φ0 =

{
∅; Type 1,
z0 + Bz0

q ; Type 2.
(5.2)

The BS point process perceived by the typical user can be defined as the superposition of
K + 1 BS PPs: Φ = ∪i∈KΦi, where K = K1 ∪ K2 ∪ {0}. The downlink SIR of the typical
user is denoted as:

SIR =
Pkhx∗‖x∗‖−α∑

i∈K
∑

x∈Φi\{x∗} Pihx‖x‖−α
, (5.3)

where {hx} is an i.i.d. sequence of random variables where hx is the fading coefficient
associated with the link between the typical user and the BS at x. We assume Rayleigh
fading i.e. hx ∼ exp(1) and α > 2 is the path loss exponent. Here ‖x∗‖ is the location of
the serving BS which is the BS that provides the maximum received power averaged over
fading. Thus

x∗ = arg maxx∈{x∗k}
Pk‖x‖−α, (5.4)
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where x∗k = arg maxx∈Φk
Pk‖x‖−α is the location of the candidate serving BS in Φk. In this

letter, we are interested in a fine-grained analysis of SIR in terms of its meta distribution
which is defined as follows.

Definition 5.2. The meta distribution of SIR is the CCDF of the conditional success prob-
ability Ps(β) , P(SIR > β|Φ), i.e.,

F̄ (β, θ) = P[Ps(β) > θ], β ∈ R+, θ ∈ (0, 1]. (5.5)

Due to the ergodicity of Φ, F̄ (β, θ) can be interpreted as the fraction of links in each
realization of Φ that have an SIR greater than β with probability at least θ. By this definition,
the standard coverage probability [93] is the mean of Ps(θ) obtained by integrating (5.5) over
θ ∈ [0, 1].

5.3 Meta distribution of SIR
In this section, we will construct the equivalent single tier representation of the K + 1

tier network defined in Section 9.4.1 by projecting Φ ⊂ R2 on R+. For a PPP-based model,
the equivalent network in R+ remains analytically tractable [36] because of the application
of the mapping theorem [13], which is stated as follows.

Theorem 5.3. If Φ is a PPP in Rd with intensity λ(x) and f : Rd 7→ Rs is a measurable
map with Λ(f−1{y}) = 0,∀y ∈ Rs, then f(Φ) = ∪x∈Φ{f(x)} is a PPP with intensity measure
Λ̃(B′) =

∫
f−1(B′)

λ(x)dx, for all compact B′ ∈ Rs.

Following this Theorem, since {z} = Φpi ⊂ R2 (∀i ∈ K2) is a homogeneous PPP with
intensity λpi , then Φ̃pi , {‖z‖} is an inhomogeneous PPP in R+ with intensity and density:

λ̃pi(z) = 2πλpiz, Λ̃pi(z) = πλpiz
2, z > 0, (5.6)

respectively. Since Theorem 5.3 does not hold when Φi (i ∈ K2) is PCP, the projection of
Φ on R+ cannot be handled on similar lines of [36]. The key enabler of our analysis is the
following property of PCP which allows the application of Theorem 5.3 to Φi for i ∈ K2.

Lemma 5.4. If Φi ≡ {x} ⊂ R2 is a PCP, then the sequence Φ̄i , {‖x‖} ⊂ R+ conditioned
on Φ̃pi is an inhomogeneous PPP with density and intensity:

Λ̄i(x|Φ̃pi) = m̄i

∑

z∈Φ̃pi

Fdi(x|z), x > 0; ∀i ∈ K2,

λ̄i(x|Φ̃pi) = m̄i

∑

z∈Φ̃pi

fdi(x|z). (5.7)

Proof. See [93, Proposition 1].
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Following the same argument, for Type 2 users, Φ̃0 = {‖z0‖ ≡ z0} is also a PPP
conditioned on z0 with intensity m̄0fd0(x|z0) ≡ m̄qfdq(x|z0). Hence, we begin our analysis
by first conditioning on the locations of the points in every parent PPP, i.e., Φ̃pi , ∀i ∈
K′2 , K2 ∪ {0}. Following Lemma 5.4, we have a sequence of BS PPPs {Φ̃i, i ∈ K′2} in R+

conditioned on ∪i∈K′2Φ̃pi .

Let us define Φ̃i = {P−1
i ‖x‖α,∀x ∈ Φi} as the projection of Φi (∀ i ∈ K1 ∪ K′2) on R+.

For i ∈ K1, using Theorem 5.3, the density of this 1-D inhomogeneous PPP Φ̃i is

Λ̃i(x) =

∫ 2π

0

∫ (xPi)
1/α

0

λix
′dx′dθ = πλi(xPi)

2
α .

For Φi(i ∈ K′2) conditioned on Φ̃pi , the density of Φ̃i = {P−1
i xα,∀x ∈ Φ̄i} is: Λ̃i(x|Φ̃pi) =

∫ (xPi)
1
α

0

m̄i

∑

z∈Φ̃pi

fdi(x
′|z)dx′ = m̄i

∑

z∈Φ̃pi

Fdi

(
(xPi)

1
α |z
)
.

Using the superposition theorem for PPP [13], the density function of the 1-D PPP Φ̃ =
∪i∈KΦ̃i, which is the projection of the K + 1 tier HetNet Φ, can be obtained as follows:
Λ̃(x| ∪i∈K′2 Φ̃pi) =

=
∑

i∈K1

Λi(x) +
∑

i∈K′2

Λi(x|Φ̃pi)

=
∑

i∈K1

πλi(xPi)
2
α +

∑

i∈K′2

m̄i

∑

z∈Φ̃pi

Fdi

(
(xPi)

1
α |z
)
, (5.8)

and intensity: λ̃(x| ∪i∈K′2 Φ̃pi) = d
dx

Λ̃(x| ∪i∈K′2 Φpi) =

∑

i∈K1

πλi
2

α
P

2
α
i x

2
α
−1 +

∑

i∈K′2

m̄i

∑

z∈Φ̃pi

P
1
α
i

1

α
x

1
α
−1

× fdi

(
(xPi)

1
α |z
)
. (5.9)

We are now in a position to define SIR of the typical user as:

SIR =
hx̃∗(x̃

∗)−1

∑
x̃∈Φ̃,x>x̃∗ hxx

−1
, (5.10)

where x̃∗ = arg minx∈Φ̃ x is the point in Φ̃ closest to the origin. The equivalence of the SIR-s
expressed in terms of Φ and Φ̃ is formally stated in the following proposition.

Proposition 5.5. The SIR of a typical user in the K + 1-tier HetNet Φ ⊂ R2 with the BSs
of the i-th tier transmitting at power Pi and max-power based user association (defined in
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5.3. Meta distribution of SIR

(5.3)) has the same distribution as that of a single tier 1-D network Φ̃ ⊂ R+ with nearest
BS association, where Φ̃ is an inhomogeneous PPP with intensity λ̃(x| ∪i∈K2∪{0} Φ̃pi), or
equivalently, density Λ̃(x| ∪i∈K2∪{0} Φ̃pi) with all BSs transmitting at unit power. Here Φ̃p0 =

∅ for Type 1 users and Φ̃p0 = z0 ∼ fdq(z0|0) for Type 2 users.

The distribution of Φ̃ being unknown, the main contribution of the paper is to use
the fact that conditional version of Φ̃ given ∪i∈K′2Φ̃pi is a PPP. We will then leverage the
tractability of the PPP under the conditioning of the parent PPs and decondition with
respect to ∪i∈K′2Φ̃pi at the last step of the analysis. Since Φ̃| ∪i∈K′2 Φ̃pi is a PPP, the PDF of
x̃∗ is given by [13]:

fx̃∗(x) = λ(x| ∪i∈K′2 Φ̃pi) exp
(
− Λ(x| ∪i∈K′2 Φ̃pi)

)
, x > 0. (5.11)

The direct calculation of the meta distributions being infeasible even for the baseline PPP-
based models [95], we first derive the expressions of the b-th order moments of Ps(β):
Mb(β) , E[Ps(β)b]. Note that the coverage probability of the typical user in this set-
ting, which was studied in our previous work [93], is a special case of this result and can be
obtained directly by setting b = 1.
Theorem 5.6. The b-th moment of Ps(β), b ∈ C can be expressed as: Mb(β) =

∑

i∈K1

πλi
2

α
P

2
α
i

∞∫

0

Q(r)
∏

j∈K′2

PGΦ̃pj
(r)r

2
α
−1dr+

∑

i∈K′2

∞∫

0

Q(r)
∏

j∈K′2\{i}

PGΦ̃pj
(r)SP Φ̃pi

(r)dr, (5.12)

where Q(r) =

exp

(
− πr 2

α

∑

j∈K1

λjP
2
α
j 2F1

(
b,− 2

α
,
−2 + α

α
,−β

))
, (5.13)

where 2F1 is the hypergeometric function and

PGΦ̃pj
(r) := E

[ ∏

z∈Φ̃pj

gj(r, z)

]
, (5.14a)

and SP Φ̃pi
(r) := E

[ ∑

z∈Φ̃pi

ρi(r, z)
∏

z′∈Φ̃pi

gi(r, z
′)

]
(5.14b)

are the probability generating functional (PGFL) and sum-product functional (SPFL) of Φpj

and Φpi, respectively (i, j ∈ K′2) with

gj(r, z) = exp

(
− m̄jP

1
α
j

1

α
r

1
α
−1

∞∫

r

u(r, x)fdj

(
(xPj)

1
α |z
)
dx
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− m̄jFdj

(
(rPj)

1
α |z
))
, (5.15a)

ρi(r, z) = m̄iP
1
α
i

1

α
r

1
α
−1fdi

(
(rPi)

1
α |z
)
, (5.15b)

where u(r, x) = (1− (1 + βr/x)−b).

Proof. From (5.10), Ps(θ) = P
(
hx̃∗ > βx̃∗

∑
x∈Φ̃,x>x̃∗ hxx

−1
) (a)

=

E
[

exp

(
− βx̃∗

∑

x∈Φ̃,
x>x̃∗

hxx
−1

)]
= E

[ ∏

x∈Φ̃,x>x̃∗

1

1 + βx̃∗x−1

]
.

Here (a) follows from the CCDF of exponential distribution and the last step follows from
the fact that {hx} is a sequence of i.i.d. exponential random variables. Now, Ps(β)b|∪i∈K2∪{0}

Φ̃pi = E
[ ∏
x∈Φ̃,x>x̃∗

1(
1+β x̃

∗
x

)b
∣∣ ⋃
i∈K′2

Φ̃pi

] (a)
=

exp

(
−
∞∫

x̃∗

(
1−

(
1 +

βx̃∗

x

)−b)

︸ ︷︷ ︸
u(x̃∗,x)

λ̃(x| ∪i∈K′2 Φ̃pi)dx

)

(b)
=

∞∫

0

exp

(
−
∞∫

r

u(r, x)λ̃(x| ∪i∈K′2 Φ̃pi)dx

)
exp

(
− Λ̃(r| ∪i∈K′2 Φ̃pi)

)
λ̃(r| ∪i∈K′2 Φ̃pi)dr

=

∞∫

0

exp

(
−
∞∫

r

u(r, x)λ̃(x| ∪i∈K′2 Φ̃pi)dx− Λ̃(r| ∪i∈K′2 Φ̃pi)

)

×
(∑

i∈K1

πλi
2

α
P

2
α
i r

2
α
−1 +

∑

i∈K′2

m̄i

∑

z∈Φ̃pi

P
1
α
i

1

α
r

1
α
−1fdi

(
(rPi)

1
α |z
))

dr

≡ T1

(
∪i∈K′2 Φ̃pi

)
+ T2

(
∪i∈K′2 Φ̃pi

)
,

where

T1

(
∪i∈K′2 Φ̃pi

)
=
∑

i∈K1

πλi
2

α
P

2
α
i

∞∫

0

exp

(
−
∞∫

r

u(r, x)λ̃(x| ∪i∈K′2 Φ̃pi)dx− Λ̃(r| ∪i∈K′2 Φ̃pi)

)

× r 2
α
−1dr,

T2

(
∪i∈K′2 Φ̃pi

)
=
∑

i∈K′2

m̄i

∞∫

0

∑

z∈Φ̃pi

P
1
α
i

1

α
r

1
α
−1fdi

(
(rPi)

1
α |z
)
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× exp
(
−
∞∫

r

u(r, x)λ̃(x| ∪i∈K′2 Φ̃pi)dx− Λ̃(r| ∪i∈K′2 Φ̃pi)
)
dr.

Here (a) follows from the PGFL of PPP (see Lemma 5.7), (b) is obtained by deconditioning
over x̃∗ whose PDF is given by (5.11). We are left with deconditioning T1 and T2 w.r.t. the
distributions of the parent PPs for i ∈ K2 and z0 for Type 2 users. We now derive the
expressions of E[T1

(
∪i∈K′2 Φ̃pi

)
] and E[T2

(
∪i∈K′2 Φ̃pi

)
] as follows: E[T1

(
∪i∈K′2 Φ̃pi

)
] =

∑

i∈K1

πλi
2

α
P

2
α
i

∞∫

0

E
[

exp

(
−
∞∫

r

u(r, x)λ̃(x| ∪i∈K′2 Φ̃pi)dx

− Λ̃(r| ∪i∈K′2 Φ̃pi)

)]
r

2
α
−1dr =

∑

i∈K1

πλi
2

α
P

2
α
i r

2
α
−1

×
∞∫

0

∏

j∈K1

exp

(
−
∞∫

r

u(r, x)πλj
2

α
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2
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j x

2
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−1dx− πλj(rPj)

2
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)

︸ ︷︷ ︸
Q(r)

×
∏

j∈K′2

E
[ ∏

z∈Φ̃pj

exp

(
−
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r

m̄jP
1
α
j

1

α
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1
α
−1u(r, x)fdj

(
(xPj)

1
α |z
)
dx

)
− m̄jFdj

(
(rPj)

1
α |z
)

︸ ︷︷ ︸
gj(r,z)

]
dr,

where the last step is obtained by substituting Λ̃ and λ̃ with (5.8) and (5.9), respectively.
Applying the same substitution, we can simplify E

[
T2

(
∪i∈K′2 Φ̃pi

)]
as

∑

i∈K′2

∞∫

0

m̄iE
[ ∑

z∈Φ̃pi

P
1
α
i

1

α
r

1
α
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1
α |z
)
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(
−
∞∫
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=
∑
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∞∫
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E
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1
α
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1
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1
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)
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−
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r
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α
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2
α
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1
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1

α
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1
α
−1fdj

(
(xPj)

1
α |z
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dx

−
(∑

j∈K1

πλj(rPj)
2
α +

∑

j∈K′2

∑

z∈Φ̃pj

m̄jFdj

(
(rPj)

1
α |z
)))]

dr
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=
∑

i∈K′2

∞∫
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2
α
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1
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1
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(
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1
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)

×
∏
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∏
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1
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(
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1
α |z
)]
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=
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∞∫

0
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∏
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PGΦ̃pj
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1
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α
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1
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(
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1
α |z
)

︸ ︷︷ ︸
ρi(r,z)

×
∏

z∈Φ̃pi

exp

(
−
∞∫

r

u(r, x)m̄iP
1
α
i

1

α
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1
α
−1fdi

(
(xPi)

1
α |z
)
dx− m̄iFdi

(
(rPi)

1
α |z
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︸ ︷︷ ︸
gi(r,z)

]
dr.

The expression spanning over the last two lines can be identified as SP Φ̃pi
(r) (see (5.14b)).

In the above expressions, Q(r) can be further simplified to (5.13).

We note that Ps(θ) in (5.12) is expressed in terms of the PGFL and SPFL of Φ̃pi .
Hence we are left with the expressions of PGFL and SPFL of Φ̃pi for i ∈ K′2. When
i ∈ K2, the PGFL and SPFL of Φ̃pi are known since it is a PPP [93, Lemmas 5,6]. For
Type 2 users, the PGFL and SPFL of Φ̃p0 can be obtained by deconditioning over z0,
i.e. PGΦ̃p0

(r) = Ez0 [g0(r, z0)] and SP Φ̃p0
(r) = Ez0 [ρ0(r, z0)g0(r, z0)]. We summerize the

expressions of PGFL and SPFL in the following lemmas.

Lemma 5.7. The PGFL of Φ̃pi is given as: PGΦ̃pi
(r) =





exp

(
−
∞∫
0

2πλpiz(1− gi(r, z))dz

)
, i ∈ K2,

∞∫
0

gq(r, z)fdq(z|0)dz, i = 0,Type 2.
(5.16)

Lemma 5.8. The SPFL of Φ̃pi is given as: SP Φ̃pi
(r) =





∫∞
0

2πλpizρi(r, z)gi(r, z)dz exp

(
−
∫∞

0
2πλpiz

′(1− gi(r, z′))dz′
)
, i ∈ K2,

∞∫
0

ρq(r, z)gq(r, z)fdq(z|0)dz, i = 0,Type 2.

(5.17)
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5.4. Summary

The final expression of Mb(β) is obtained by substituting PGΦ̃pi
(r) and SP Φ̃pi

(r) given
by (9.21) and (5.17) to (5.12). The accuracy of these expressions is verified with the Monte
Carlo simulations in Fig. 5.1a. Note that we can also derive Mb(β) on similar lines of [93]
by conditioning on the association to the BSs of the i-th tier (i ∈ K). However, the single
tier projection presented in this letter offers an alternate and more compact derivation of
Mb(β). Further note that M1(β) and M2(β) for Type 1 and 2 users converge to M1(β) and
M2(β) for the baseline PPP model (i.e. where Φi (for all i ∈ K) and Φu are homogeneous
PPPs) as σ2 increases. This is because of the fact that the PCP weakly converge to PPP as
the cluster size tends to infinity [79, Sec. IV-B].

5.3.1 Approximation of meta distributions
From the b-th moment of the conditional success probability, the meta distribution of

SIR can be obtained by using the Gil-Pelaez theorem [97] as:

F̄ (β, θ) =
1

2
+

1

π

∞∫

0

Im(e−jt log θMjt(β))

t
dt,

where Im(z) denotes the imaginary part of z ∈ C. As it can be readily observed, the
expression of the exact meta distribution is not computationally efficient since it requires
integration over the imaginary moments. Hence, following the approach of [94, 98], we
approximate F̄ (β, θ) with a beta-kernel:

F̄ (β, θ) ≈ 1− 1

B(θ1, θ2)

θ∫

0

tθ1−1(1− t)θ2−1dt, (5.18)

where B(·, ·) is the beta function and (θ1, θ2) is given by solving the following system of
equations:

M1 =
θ1

θ1 + θ2

and M2 =
θ2

1

(θ1 + θ2)2

( θ2

θ1(θ1 + θ2 + 1)
+ 1
)
.

In Fig. 5.1b, we plot F̄ (β, θ) for a specific network configuration for Type 1 and Type 2
users. Clearly, (5.18) provides a reasonably tight approximation for the meta distribution of
SIR for a wide range of β. Further, we observe that the meta distribution of Type 2 users
is greater than the baseline PPP-based model and the meta distribution of Type 1 users is
less than the baseline PPP-based model. This ordering is same as the ordering observed for
coverage probability (see Fig. 5.1a and [93, Sec. IV]). However, it is a stronger result than
the ordering of coverage. This implies that for a given β and same user density, there exists
more number of Type 2 users satisfying SIR > β than Type 1 users in the network.

5.4 Summary
In this chapter, we characterized the meta distribution of the downlink SIR for the

typical user in the general K-tier HetNet model where the BSs are distributed as a PPP or a
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Figure 5.1: Meta distribution of SIR for Type 1 and Type 2 users in a two tier network.
Details of the network configuration: K = 2, K1 = {1}, K2 = {2}, q = 2 for Type 2,
α = 4, P2 = 102P1, λp2 = 2.5 km−2, λp1 = 1 km−2, and m̄2 = 4. Markers indicate the
values obtained from Monte Carlo simulations. The solid and dotted arrows in Fig. 5.1a
indicate the shift of the quantities with the increase in cluster size (σ2 = {20, 40, 60} m).
For Fig. 5.1b, σ2 = 40 m.
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5.4. Summary

PCP. The main technical contribution is the accurate derivation of the b-th order moments of
the conditional success probability. The key enabling step of the analysis is to condition on
the parent point process of the BS PCPs which allows us to treat the PCPs as inhomogeneous
PPPs. Under this conditioning, we obtain a sequence of BS PPPs in R2 which are projected
on R+ to construct a single tier equivalence of the multi-tier HetNet. Using this single
tier network, we present a compact derivation of the b-th order moments of the conditional
success probability by applying the PGFL and SPFL of the parent PPPs. We finally use
the moments of the conditional success probability to compute a beta approximation of the
meta distribution of SIR.
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6

Load on the Typical Poisson Voronoi
Cell with Clustered User Distribution

6.1 Introduction

A vast majority of the existing literature on the analysis of cellular networks using
stochastic geometry focuses on the distribution of downlink signal-to-interference-and-noise-
ratio (SINR) under a variety of settings [32]. While this is important for evaluating the
downlink coverage of the network, the SINR distribution by itself is not sufficient to compute
the distribution of the effective downlink rate perceived by the users, which is an equally
important metric. In order to derive the rate distribution of the typical user, we addition-
ally need information about the fraction of resources allocated to that user, which in turn
depends upon the load (number of users served) on its serving BS [24]. Naturally, load char-
acterization further depends upon the user distribution. While this problem is well-studied
for the canonical PPP-based models (where both user and BS locations are modeled as in-
dependent PPPs), the same is not true for the recently developed PCP-based models for
cellular networks [79]. As a step towards this direction, we characterize load on the typical
cell of a PCP-based cellular network model in which the BSs follow a PPP while the users
are distributed as an independent PCP.

Prior Art. The distributions of the load on the typical cell and the zero cell (i.e. the
cell containing the origin) for the cannonical PPP-based models are well-known in the lit-
erature [24, 57]. However, the analysis becomes intractable for the non-PPP models, i.e.
when the PPP assumption on either of the distributions of BSs or users is relaxed. In [99],
the authors characterize the load distributions for any general distribution for BSs which is
asymptotically exact under strong shadowing. In [100], the authors derive the load distribu-
tions assuming that the BSs are distributed as PPP and the users are distributed as a Cox
process driven by a Poisson line process. While these works evince the tractability of load
distributions for the non-PPP models in general, the analyses do not simply extend to the
PCP-based models developed in [79]. The current paper presents the first work towards the
characterization of load distributions for the PCP-based models.
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6.2. System model

Contributions. We consider a cellular network where the BSs are distributed as a homo-
geneous PPP and the users are distributed as an independent PCP. For this network, we
derive the first two moments (or equivalently the mean and variance) of the typical cell load,
which is defined as the number of points of PCP falling in the typical cell of the Poisson
Voronoi (PV) tessellation generated by the BS PPP. The key enabling step is the derivation
of the nth moment of typical cell load for a general user point process (PP), whose exact
expression is derived in Theorem 6.7. As a special case, we evaluate the first and second mo-
ments of cell load when the user PP is a PCP (Corollary 6.8). To the best of our knowledge,
this is the first result on the variance of the cell load for a PCP-based cellular model. While
these exact results for the moments are key contributions by themselves, it is unfortunately
not very computationally efficient to evaluate these expressions for n > 2. For this reason,
we provide an alternate formulation of the load PGF by approximating the typical cell as
a circle with the same area. We then obtain an easy-to-use expression for the PMF of the
typical cell load by inverting the PGF. After verifying the accuracy of the analysis with
Monte Carlo simulations, we consider the downlink of the cellular network as a case study
and apply this PMF to compute the rate coverage of a randomly chosen user in the typical
cell.

Notations. (i) We denote a PP and its associated counting measure by the same no-
tation, i.e., if Φ denotes a PP, then Φ(A) denotes the number of points of Φ falling in
A ∈ B(R2), where B(R2) denotes the Borel-σ algebra in R2, (ii) | · | denotes the Lebesgue
measure in R2 (i.e., for a set B ⊆ R2, |B| denotes the area of B), (iii) b(x, R) denotes a
disc of radius R centered at x ∈ R2, (iv) the position vector of a point in R2 is denoted as
boldface (such as x) with magnitude ‖x‖ ≡ x, (v) 1(·) denotes the indicator function, and
(vi) Au(R1, R2, r) and Ai(R1, R2, r) denote the areas of union and intersection of two discs of
radii R1 and R2, whose centers are separated by a distance r.

6.2 System model
We consider a cellular network where the BSs are distributed as a homogeneous PPP

Φb ⊂ R2 with density λb. The users are assumed to be distributed as another independent
PP Φu. If each user associates with the BS which provides maximum average power, the
association cells of the network form the PV tessellation generated by Φb [32]. Therefore,
the association cell of a BS in Φb is defined as: C(x) =

{y ∈ R2 : ‖y − x‖ ≤ ‖y − t‖,∀ t ∈ Φ}|x ∈ Φb. (6.1)

Thus Φu(C(x)) is the number of users associated with the BS at x, equivalently the load on
the BS at x [24]. We are interested in characterizing the distribution of the load on the typical
BS (termed typical cell load). Following Slivnyak’s theorem, the typical BS can be placed at
the origin [13]. Thus, the typical cell load can be denoted as Φu(C(0)) ≡ Φu0 . When Φu is a
homogeneous PPP, the PMF of Φu0 is well-known in the literature [24]. However, not much
is known if the user distribution is not a PPP. In this chapter, we derive the distribution of
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Figure 6.1: Normalized variance of Φu0 (λb = 1 km−2). The markers denote the values
obtained by Monte Carlo simulation.

Φu0 when Φu is distributed as a PCP independent of Φb. In the rest of this Section, we will
introduce the fundamentals of PCP.

Definition 6.1 (PCP). A PCP Φu(λp, m̄, f) is defined as Φu =
⋃

z∈Φp

z + Bz, where Φp is

the parent PPP with intensity λp and Bz denotes the offspring PP centered at z ∈ Φp.
The offspring point process is defined as an independently and identically distributed (i.i.d.)
sequence of random vectors {s ∈ Bz} where s follows a probability density function (PDF)
f(s) and Bz(R2) is a Poisson random variable with mean m̄.

In this chapter, we focus on two well-known special cases of PCP known as the Thomas
cluster process (TCP) and Matérn cluster process (MCP) which are defined as follows.

Definition 6.2 (TCP). A PCP Φu (λp, m̄, f) is called a TCP if the offspring points in Bz

are distributed normally around z, i.e., f(s) = 1
2πσ2 e

− ‖s‖
2

2σ2 . Here σ2 is the cluster variance.

Definition 6.3 (MCP). A PCP Φu (λp, m̄, f) is called an MCP if the distribution of the
offspring points in Bz is uniform within b(0, rd). Hence, f(s) = f(s, θs) = 2s

R2× 1
2π
, 0 ≤ s ≤

R, 0 < θs ≤ 2π.

If the offspring points are isotropically distributed around the cluster center i.e., the
radial coordinates of the offspring points with respect to the cluster center have the joint
PDF f(s, θs) = f(1)(s)

1
2π
, where f(1)(·) is the marginal PDF of the radial coordinate, then

the PDF of the distance of a point of Φ from the origin given its cluster center at z ∈ Φp

is given by: fd(r|z) = fd(r|z), i.e. the conditional distance distribution depends only on the
magnitude of z. We now provide the conditional distance distributions of TCP and MCP.
When Φ is a TCP, the conditional distance distribution is Rician with PDF:

fd(x|z) =
x

σ2
exp

(
−x

2 + z2

2σ2

)
I0

(xz
σ2

)
, x, z ≥ 0, (6.2)
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Figure 6.2: Load on the typical cell: comparison of the proposed PMF and the actual PMF
when Φu is a TCP (λb = 1 km−2, λp = 5 km−2, m̄ = 5).

where I0(·) is the modified Bessel function of the first kind with order zero. When Φk is an
MCP, fd(x|z) =

χ(1)(x, z) =
2x

R2
, 0 ≤ x ≤ R− z, 0 ≤ z ≤ R, (6.3)

χ(2)(x, z) =
2x

πR2
cos−1

(
x2 + z2 − R2

2xz

)
, |R− z| < x ≤ R + z.

6.3 Moments of the typical cell load
In this Section, we derive the nth moments of Φu0 . The key enabler of the analysis is

the Campbell’s theorem [13], which is stated as follows.

Theorem 6.4. For a measurable g : R2n 7→ (0, 1],

E
[ 6=∑

{xi}⊂Φu

g({xi})
]

=

∫

R2

· · ·
∫

R2

g({xi})%(n)({xi})d(xi),

where {xi} is a sequence of n distinct points of Φu and %(n) : R2n 7→ R+ is the reduced nth
moment density of Φu.

Informally, %(n)({xi}) is the joint probability that there are n points specified at the
locations x1, . . . ,xn in the infinitesimal volumes dx1, . . . , dxn. In the following Lemma, we
provide %(n)(·) of PCP for n = 1, 2.

Lemma 6.5. For a PCP, %(1)(x) = m̄λp and %(2)(x1,x2) ≡ %(2)(‖x1 − x2‖) = λ2
pm̄

2(1 +
λ−1

p g ∗ g(‖x1 − x2‖)), where g ∗ g(x) =
∫
R2

g(z)g(z + x)dz.

Lemma 6.5 allows further simplications of %(2)(r) for PCP as follows.
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Corollary 6.6. The second moment density of a PCP is expressed as: %(2)(‖x1 − x2‖) ≡
%(2)(r) =




λ2

pm̄
2 + λpm̄2

4πσ2 exp

(
− r2

4σ2

)
when Φu is TCP

λ2
pm̄

2 + 1(r ≤ 2R)λpm̄2Ai(R,R,r)

π2R4 when Φu is MCP
, (6.4)

where Ai(R1, R2, r) = R2
1 arctan

(
r2+R2

1−R2
2

t

)
+ R2

2 arctan
(
r2−R2

1+R2
2

t

)
− t

2
, with t =

(
(R1 + R2 +

r)(R1 + R2 − r)(R1 − R2 + t)(−R1 +R2 + t)
) 1

2 and 0 ≤ r ≤ R1 + R2.

Please see [13] for more details on the derivation of these expressions. The following
Theorem demonstrates that the nth moment of Φu0 for any general distribution of Φu can be
expressed in terms of its %(n)(·).
Theorem 6.7. The nth moment of Φu0 for any general distribution of Φu independent of Φb

can be written as:

E[(Φu0)n] =

∫

R2

· · ·
∫

R2

exp

(
− λb

∣∣∣∣
n⋃

i=1

b(xi, xi)

∣∣∣∣
)
%(n)({xi})d({xi}). (6.5)

Proof. We can write E[(Φu0)n] as:

E
[ 6=∑

{xi}∈Φu

n∏

i=1

1(xi ∈ C(0))

]

= E
[ 6=∑

{xi}∈Φu

P
( ⋂

y∈Φb

n∏

i=1

1(xi < ‖xi − y‖)
)]

= E
[ 6=∑

{xi}∈Φu

P
(

Φb

( n⋃

i=1

b(xi, xi)

)
= 0

)]

= E
[ 6=∑

{xi}∈Φu

P
(

Φb

( n⋃

i=1

b(xi, xi)

)
= 0

)]

(a)
= E

[ 6=∑

{xi}∈Φu

exp

(
− λb

∣∣∣∣
n⋃

i=1

b(xi, xi)

∣∣∣∣
)]
,

where step (a) is given by the void probability of PPP [13]. The final expression is obtained
by using Theorem 6.4.

Given %(n)(r) for n = 1, 2 in (6.4), we can simplify (6.5) to obtain the first two moments
of Φu0 as follows.
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Corollary 6.8. When Φu is a PCP, the first two moments of Φu0 are given by: E[Φu0 ] = m̄λp

λb
,

and

E[Φu0

2] =

2π∫

0

∞∫

0

∞∫

0

exp(−λbAu(x1, x2, d(x1, x2, θ))%
(2)(d(x1, x2, θ))x1x2dx1dx2dθ,

where d(x1, x2, θ) := (x2
1 + x2

2 − 2x1x2 cos θ)
1
2 .

Corollary 6.9. The variance of Φu0 is given by Var[Φu0 ] =

m̄2λ2
p

λ2
b

(
0.28 +

2

λpσ2

π∫

0

∞∫

0

x1∫

0

exp

(
−Au(x1, x2, d(x1, x2, θ))−

d(x1, x2, θ)
2

4λbσ2

)
x1 x2 dx2 dx1dθ

)
,

when Φu is TCP, (6.6)

m̄2λ2
p

λ2
b

(
0.28 +

4

λpR2

∞∫

0

π∫

0

2R∫

0

exp
(
−λbAu(x, (x2 + r2 + 2xr cos θ), r)

)
Ai(R, R, r) x r dr dθ dx

)
,

when Φu is MCP. (6.7)

Proof. The proof follows from Corollary 6.8 by substituting %(2)(r) for TCP and MCP pro-
vided in Corollary 6.6 and some algebraic manipulation, which is skipped due to the space
constraint.

Note that the first term in (6.6) denotes the variance of Φu0 if Φu is a PPP. Also, E[Φu0 ]
is independent of the cluster size (which is σ for TCP and R for MCP) and is hence the same
as the mean cell load under the assumption that Φu is a PPP of density m̄λp. However, the
variance of Φu0 is higher if Φu is a PCP. The accuracy of (6.6) is verified in Fig. 6.1, where
we notice that the normalized variance Var[Φu0 ]/E[Φu0 ]2 for TCP and MCP computed using
Corollary 6.6 matches with the Monte Carlo simulations.

Remark 6.10. Although Theorem 6.7 gives the exact expressions of the moments of Φu0 ,
we can not go beyond the first two moments since the computation of (6.5) will be limited
by the unavailability of the reduced moment measures of PCP for n ≥ 2 in closed form.
This motivates us to formulate a useful approximation to characterize the distribution of
Φu0 , which will be presented in the next Section.

Before proceeding further, using moment matching, we demonstrate that it is not quite
possible to accurately construct the PMF of Φu0 using only its mean and variance. To
this end, we assume that Φu0 follows a negative binomial (NB) distribution, i.e., Φu0 ∼
NB(r, t) ⇒ P(Φu0 = n) =

(
r+n−1
n

)
(1 − t)rtn (for some r ∈ Z+, t ∈ (0, 1]). The intuition

behind choosing NB(r, t) is that given any closed subset B ⊂ R2, Φu(B) is known to follow
a super-Poissonian distribution (i.e. the variance is greater than the mean) [13], and NB
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is a standard distribution for such random variables. By moment matching, we obtained:
t̂ = 1 − E[Φu0 ]/Var(Φu0) and r̂ = b(1 − t)E[Φu0 ]/tc. In Fig. 6.2, we plot the resulting PMF
obtained by moment matching. We observe that for small cluster size (i.e. small σ and R

for TCP and MCP, respectively), the NB PMF deviates significantly from the empirical
PMF of Φu0 obtained from simulation. In particular, the NB distribution significantly
underestimates the void probability P(Φu0 = 0). Hence the first two moments are not clearly
enough to characterize the distribution of Φu0 . Since obtaining the exact expressions of
higher order moments is not possible using this route, we provide an alternate formulation
for the PMF of Φu0 in the next Section.

6.4 Derivation of the load PMF
This is the second contribution of the chapter, where we start from an approximation

of the typical PV cell which eventually leads us to a reasonably accurate characterization of
the load PMF. In order to enable the analysis, we approximate the typical cell as a circle
with the same area. We formally state this approximation as follows.

Assumption 1. We assume that Φu(C(0)) ≈ Φu(b(0, Rc)), where πR2
c = |C(0)|.

While this approximation is inspired by the fact that the large cells in a PV tessellation
are circular [101], we will demonstrate that this approximation for any typical cell provides
reasonably accurate values of the PMF of Φu0 . We first characterize the PGF of Φu0 in the
following Theorem.

Theorem 6.11. The PGF of Φu0 is given as: GΦu0
(θ) =

E
[
θΦu0

]
=

∞∫

0

exp

(
− 2πλp

∞∫

0

(
1− exp

(
− m̄

r∫

0

(1− θ)fd(u|v)du

))
vdv

)
fRc(r)dr, (6.8)

where fRc(r) = 2×3.53.5

Γ(3.5)
r6 exp (−3.5r2).

Proof. Following [102], the random variable λb|C(0)| follows a Gamma distribution with
PDF: f(x;α, β) = β−α

Γ(α)
xα−1e−

x
β , x > 0, where α = 3.5 and β = 3.5−1. Since πR2

c = |C(0)|,√
πλbRc follows a Nakagami distribution with PDF fRc(x;m,Ω) = 2mm

Γ(m)Ωm
x2m−1 exp

(
−m

Ω
x2
)
, x >

0, where m = 3.5 and Ω = 1. We now focus on the conditional PGF of Φu(b(0, Rc)) given
Rc:

GΦu(b(0,Rc))(θ) = E
[
θΦu(b(0,Rc))

]

= E
[
θ

∑
x∈Φu

1(‖x‖<Rc)
]
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= E

[∏

x∈Φu

θ1(‖x‖<Rc)

]
.

The final step follows from the PGFL of PCP ([79, Lemma 4]) and deconditioning over
Rc.

We now evaluate GΦu(C(0))(θ) when Φu is a TCP (MCP) in the following Corollary.

Corollary 6.12. When Φu is a TCP,

GΦu(C(0))(θ) =

∞∫

0

exp

(
− 2πλp

∞∫

0

(
1− exp

(
− m̄(1− θ)

×
(
1−Q1(vσ−1, rσ−1)

)))
vdv

)
fRc(r)dr, (6.9)

where Q1(α, β) =
∫∞
β
ye−

y2+α2

2 I0(αy)dy is the Marcum Q-function. Here I0(·) is the modified
Bessel function of order zero. When Φu is an MCP, GΦu(C(0))(θ) is given by:

∞∫

0

exp

(
− 2πλp

∞∫

0

(
1− exp

(
− m̄(1− θ)ξ(r, v)

))
vdv

)
fRc(r)dr, (6.10)

where

ξ(r, v) =
1

R2

([
min(r,max(R− v, 0))

]2
+

2

π

min(r,R+v)∫

min(r,|R−v|)

u arccos

(
u2 + v2 − R2

2uv

)
du

)
(6.11)

Finally the PMF of Φu0 , denoted as {pn, n ≥ 0}, can be obtained by performing the
inverse z-transform of the PGF which is given by:

pn =
Rn

2

π∫

−π

GΦu0
(Rejθ)ejnθdθ, (6.12)

where R is chosen such that GΦu0
(Rejθ) is finite for all −π < θ < π. For numerical compu-

tation, this integral can approximated as a summation at N distinct points:

p̂n =
Rn

N

N−1∑

m=0

GΦu0
(Rej2πm/N)ej2πnm/N . (6.13)

Note that this step is nothing but the inverse discrete Fourier transform (DFT) of {GΦu0
(Rej2πm/N),

m = 0, 1, . . . , N − 1}, scaled by Rn [103]. In Fig. 6.2, we observe that {p̂n} are very close to
P(Φu0 = n), empirically computed from the Monte Carlo simulations of the network.
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6.5 Application to rate analysis
In this Section, we will apply the PMF of Φu0 to characterize the downlink rate in the

cellular network under the system model defined in Section 9.4.1. In particular, we evaluate
the complementary cumulative density function (CCDF) of rate for a representative user,
which is selected uniformly at random from Φu0 conditioned on the fact that the typical cell
has at least one user, i.e., Φu0 > 0. Assuming that this user is located at u, the signal-to-
interference-ratio (SIR) is defined as:

SIR =
h0u

−α
∑

x∈Φ\{0}
hx‖x− u‖−α . (6.14)

Here hx denotes fading on the link between the representative user and the BS at x ∈ Φb,
and α > 2 is the pathloss exponent. We assume Rayleigh fading, i.e., {hx} is a sequence of
i.i.d. random variables with hx ∼ exp(1). Assuming interference-limited network and the
system bandwidth (BW) (W ) is equally partitioned between the users associated with a BS,
the rate of the representative user conditioned on Φu(C0) > 0 is defined as:

Rate = min

(
W

Φu0

log(1 + SIR),
Rb

Φu0

)
, (6.15)

where Rb is the backhaul constraint on the BS imposed by the fiber connecting the BS to
the network core which can support a maximum rate of Rb bps. Hence the rate of each
user cannot exceed Rb/Φu0 . We define the rate coverage probability as the CCDF of Rate:
Pr(ρ) = P(Rate > ρ|Φu0 > 0), where ρ is the target rate threshold. We now provide the
expression for the rate coverage in the following Theorem.

Theorem 6.13. The rate coverage probability for the representative user is expressed as:

Pr(ρ) =

bRb
ρ
c∑

n=1

Pc

(
2
nρ
W
−1

)
p̂n

1− p̂0

, (6.16)

where p̂n is obtained from (6.13) and Pc(τ) = P(SIR > τ) is the CCDF of SIR that can be
expressed as:

Pc(τ) = δ2τ−
2
α

τ
2
α∫

0

β(t)−2

1 + t
α
2

dt, (6.17)

where β(t) = t
∞∫
t−1

1

1+u
2
α

du, with δ = 9
7
.

Proof. Given the backhaul constraint, the maximum users that can be supported with a
rate ρ is given by bRb/ρc. First we note that Rate is a function of SIR and Φu0 , which
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Figure 6.3: Rate coverage probability: (a) for different m̄ (markers indicate the values
obtained from Monte Carlo simulation) and (b) for different σ with Rb → ∞ ((λb, λp) =
(1, 5)km−2).

are in general correlated. However, the joint distribution of SIR and Φu0 is intractable. For
tractability, we assume that these two random variables are independent. This is a well-
accepted assumption in the literature that preserves the accuracy of the analysis [57]. Under
this assumption, the rate coverage can be expressed as: Pr(ρ) = P

(
W

Φu(C0)
log(1 + SIR) >

ρ|Φu(C0) > 0
)

= P
(
SIR > 2

Φu(C0)ρ
W − 1

∣∣Φu(C0) > 0

)
=

=

bRb
ρ
c∑

n=1

SIR distribution︷ ︸︸ ︷
Pc(2nρ/W − 1)×P(C0(Φu) = n|C0(Φu) > 0)︸ ︷︷ ︸

load distribution

.

The load distribution can be simplified as: P(C0(Φu)=n,C0(Φu)>0)
P(C0(Φu)>0)

. Hence we are left with the
characterization of Pc, or the CCDF of SIR. Since Φu and Φb are independent and Φu is
a stationary distribution (i.e. the distribution of Φu is invariant under translation of its
points), the representative user is equivalent to a randomly selected point in C0. The SIR

distribution of this point has been recently characterized in [104]. The expression of Pc(τ)
in (6.17) is obtained from [104, Theorem 2].

We verify the accuracy of Theorem 6.13 in Fig. 6.3a where we observe a close match
between the analytical and empirical results. Because of the space constraint, we only present
the results when Φu is a TCP. We observe that Pr decreases as (i) m̄ increases as more number
of users share the resources and (ii) Rb decreases as it imposes an upper bound on the per
user rate. In Fig. 6.3b, we plot Pr for different σ which is a measure of the cluster size.
We observe that Pr is almost invariant to σ. The reason is that the rate coverage is mostly
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dominated by the first moment of load (see [24, Corollary 1]) which is independent of the
cluster size (Corollary 6.8).

6.6 Summary
Due to the limitation of PPP in modeling spatial coupling in the network, there has been

an increasing interests in developing non-PPP models of cellular networks, such as the PCP-
based models which capture coupling between the users (such as in hotspots) and between
users and BSs [79]. While the SINR distribution for the PCP-based models is by now well-
understood, the load distribution in these networks has not received much attention. In this
chapter, we made the first attempt towards this direction by characterizing the distribution
of the typical cell load where the BSs are distributed as a homogeneous PPP and the users
are distributed as an independent PCP. We also demonstrated the utility of this result by
using it to characterize the user rate for a representative user in the typical cell.
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7

Modeling and Analysis of Integrated
Access and Backhaul

7.1 Introduction
With the exponential rise in data-demand far exceeding the capacity of the traditional

macro-only cellular network operating in sub-6 GHz bands, network densification using mm-
wave base stations (BSs) is becoming a major driving technology for the 5G wireless evolu-
tion [105]. While heterogeneous cellular networks (HetNets) with low power SBSs overlaid
with traditional macro BSs improve the spectral efficiency of the access link (the link be-
tween a user and its serving BS), mm-wave communication can further boost the data rate
by offering high bandwidth. That said, one of the main hindrances in the way of large-
scale deployment of small cells is that the existing high-speed optical fiber backhaul network
that connects the BSs to the network core is not scalabale to the extent of ultra-densification
envisioned for small cells [106–108]. However, with recent advancement in mm-wave commu-
nication with highly directional beamforming [109,110], it is possible to replace the so-called
last-mile fibers for SBSs by establishing fixed mm-wave backhaul links between the SBS
and the MBS equipped with fiber backhaul, also known as the anchored BS (ABS), thereby
achieving Gigabits per second (Gbps) range data rate over backhaul links [27]. While mm-
wave fixed wireless backhaul is targetted to be a part of the first phase of the commercial
roll-out of 5G [111], 3GPP is exploring a more ambitious solution of IAB where the ABSs
will use the same spectral resources and infrastructure of mm-wave transmission to serve
cellular users in access as well as the SBSs in backhaul [112]. In this chapter, we develop
a tractable analytical framework for IAB-enabled mm-wave cellular networks using tools
from stochastic geometry and obtain some design insights that will be useful for the ongoing
pre-deployment studies on IAB.

7.1.1 Background and related works
Over recent years, stochastic geometry has emerged as a powerful tool for modeling

and analysis of cellular networks operating in sub-6 GHz [54]. The locations of the BSs
and users are commonly modeled as independent Poisson point processes (PPPs) over an
infinite plane. This model, initially developed for the analysis of traditional macro-only
cellular networks [20], was further extended for the analysis of HetNets in [21, 22, 35]. In
the followup works, this PPP-based HetNet model was used to study many different aspects
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of cellular networks such as load balancing, BS cooperation, multiple-input multiple-output
(MIMO), energy harvesting, and many more. Given the activity this area has seen over the
past few areas, any attempt towards summarizing all key relevant prior works here would be
futile. Instead, it would be far more beneficial for the interested readers to refer to dedicated
surveys and tutorials [23, 31–33] that already exist on this topic. While these initial works
were implicitly done for cellular networks operating in the sub-6 GHz spectrum, tools from
stochastic geometry have also been leveraged further to characterize their performance in
the mm-wave spectrum [29, 113–115]. These mm-wave cellular network models specifically
focus on the mm-wave propagation characteristics which signifantly differ from those of the
sub-6 GHz [109], such as the severity of blocking of mm-wave signals by physical obstacles
like walls and trees, directional beamforming using antenna arrays, and inteference being
dominated by noise [116]. These initial modeling approaches were later extended to study
different problems specific to mm-wave cellular networks, such as, cell search [117], antenna
beam alignment [118], and cell association in the mm-wave spectrum [119]. With this brief
introduction, we now shift our attention to the main focus of this chapter which is IAB in
mm-wave cellular networks. In what follows, we provide the rationale behind mm-wave IAB
and how stochastic geometry can be used for its performance evaluation.

For traditional cellular networks, it is reasonable to assume that the capacity achieved
by the access links is not limited by the backhaul constraint on the serving BS since all
BSs have access to the high capacity wired backhaul. As expected, backhaul constraint was
ignored in almost all prior works on stochastic geometry-based modeling and analysis of
cellular networks. However, with the increasing network densification with small cells, it
may not be feasible to connect every SBS to the wired backhaul network which is limited by
cost, infrastructure, maintenance, and scalability. These limitations motivated a significant
body of research works on the expansion of the cellular networks by deploying relay nodes
connected to the ABS by wireless backhaul links, e.g. see [120]. Among different techniques
of wireless backhaul, 3GPP included layer 3 relaying as a part of the long term evolution
advanced (LTE-A) standard in Release 10 [121,122] for coverage extension of the cellular net-
work. Layer 3 relaying follows the principle of IAB architecture, which is often synonymously
referred to as self-backhauling, where the relay nodes have the functionality of SBS and the
ABS multiplexes its time-frequency resources to establish access links with the users and
wireless backhaul links with SBSs that may not have access to wired backhaul [123]. How-
ever, despite being the part of the standard, layer 3 relays have never really been deployed
on a massive scale in 4G mostly due to the spectrum shortage in sub-6 GHz. For instance,
in urban regions with high capacity demands, the operators are not willing to relinquish any
part of the cellular bandwidth (costly and scarce resource) for wireless backhaul. However,
with recent advancement in mm-wave communication, IAB has gained substantial interest
since spectral bottleneck will not be a primary concern once high bandwidth in mm-wave
spectrum (at least 10x the cellular BW in sub-6 GHz) is exploited. Some of the notable
industry initiatives driving mm-wave IAB are mm-wave small cell access and backhauling
(MiWaveS) [124] and 5G-Crosshaul [125]. In 2017, 3GPP also started working on a new
study item to investigate the performance of IAB-enabled mm-wave cellular network [112].
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7.1. Introduction

Although backhaul is becoming a primary bottleneck of cellular networks, there is very
little existing work on the stochastic geometry-based analyses considering the backhaul con-
straint [126–128]. While these works are focused on the traditional networks in sub-6 GHz,
contributions on IAB-enabled mm-wave HetNet are even sparser, except an extension of the
PPP-based model [129], where the authors modeled wired and wirelessly backhauled BSs
and users as three independent PPPs. In [130, 131], similar modeling approach was used
to study IAB in sub-6 GHz using full duplex BSs. The fundamental shortcoming of these
PPP-based models is the assumption of independent locations of the BSs and users which
are spatially coupled in actual networks. For instance, in reality, the users form spatial
clusters, commonly known as user hotspots and the centers of the user hotspots are target-
ted as the potential cell-cites of the short-range mm-wave SBSs [71]. Not surprisingly, such
spatial configurations of users and BSs are at the heart of the 3GPP simulation models [79].
To address this shortcoming of the analytical models, in this chapter, we propose the first
3GPP-inspired stochastic geometry-based finite network model for the performance analysis
of HetNets with IAB. The key contributions are summarized next.

7.1.2 Contributions
New tractable model for IAB-enabled mm-wave HetNet. We develop a realistic and
tractable analytical framework to study the performance of IAB-enabled mm-wave HetNets.
Similar to the models used in 3GPP-compliant simulations [112], we consider a two-tier
HetNet where a circular macrocell with ABS at the center is overlaid by numerous low-
power small cells. The users are assumed to be non-uniformly distributed over the macrocell
forming hotspots and the SBSs are located at the geographical centers of these user hotspots.
The non-uniform distribution of the users and the spatial coupling of their locations with
those of the SBSs means that the analysis of this setup is drastically different from the state-
of-the-art PPP-based models. Further, the consideration of a single macrocell (justified by
the noise-limited nature of mm-wave communications), allows us to glean crisp insights into
the coverage zones, which further facilitate a novel analysis of load on ABS and SBSs1.
Assuming that the total system BW is partitioned into two splits for access and backhaul
communication, we use this model to study the performance of three backhaul BW partition
strategies, namely, (i) equal partition, where each SBS gets equal share of BW irrespective of
its load, (ii) instantaneous load-based partition, where the ABS frequently collects information
from the SBSs on their instantaneous loads and partitions the backhaul BW proportional to
the instantaneous load on each SBS, and (iii) average load-based partition, where the ABS
collects information from the SBSs on their average loads and partitions the backhaul BW
proportional to the average load on each SBS.

New load modeling and downlink rate analysis. For the purpose of performance
evaluation and comparisons between the aforementioned strategies, we evaluate the downlink

1 In our discussion, BS load refers to the number of users connected to the BS.
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rate coverage probability i.e. probability that the downlink data rate experienced by a
randomly selected user will exceed a target data rate. As key intermediate steps of our
analysis we characterize the two essential components of rate coverage, which are (i) signal-
to-noise-ratio (SNR)-coverage probability, and (ii) the distribution of ABS and SBS load,
which directly impacts the amount of resources allocated by the serving BS to the user of
interest. We compute the probability mass functions (PMFs) of the ABS and the SBS loads
assuming the number of users per hotspot is fixed. We then relax this fixed user assumption
by considering independent Poisson distribution on the number of users in each hotspot. Due
to a significantly different spatial model, our approach of load modeling is quite different
from the load-modeling in PPP-based networks [128].

System design insights. Using the proposed analytical framework, we obtain the follow-
ing system design insights.

• We compare the three backhaul BW partition strategies in terms of three metrics, (i)
rate coverage probability, (ii) median rate, and (iii) 5th percentile rate. Our numerical
results indicate that for a given combination of the backhaul BW partition strategy
and the performance metric of interest, there exists an optimal access-backhaul BW
split for which the metric is maximized.

• Our results demonstrate that the optimal access-backhaul partition fractions for me-
dian and 5th percentile rates are not very sensitive to the choice of backhaul BW par-
tition strategies. Further, the median and 5th percentile rates are invariant to system
BW.

• For given infrastructure and spectral resources, the IAB-enabled network outperforms
the macro-only network with no SBSs up to a critical volume of total cell-load, beyond
which the performance gains disappear and its performance converges to that of the
macro-only network. Our numerical results also indicate that this critical total cell-load
increases almost linearly with the system BW.

7.2 System model
7.2.1 mm-wave cellular system model
BS and user locations

Inspired by the spatial configurations used in 3GPP simulations [79, 112] for a typical
outdoor deployment scenario of a two-tier HetNet, we assume that n SBSs are deployed
inside a circular macrocell of radius R (denoted by b(0, R)) with the macro BS at its center.
We assume that this BS is connected to the core network with high speed optical fiber and
is hence an ABS. Note that, in contrast to the infinite network models (e.g. the PPP-based
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Figure 7.1: Illustration of the system model.

networks defined over R2) which are suitable for interference-dominated networks (such as
conventional cellular networks in sub-6 GHz), we are limiting the complexity of the system
model by considering single macrocell. This assumption is justified by the noise-limited
nature of mm-wave communications [116]. Moreover, as will be evident in the sequel, this
setup will allow us to glean crisp insights into the properties of this network despite a more
general user distribution model (discussed next) compared to the PPP-based model.

We model a user hotspot at x as b(x, Rs), i.e., a circle of radius Rs centered at x. We
assume that the macrocell contains n user hotspots, located at {xi ≡ (xi, ϕi), i = 1, . . . , n},
which are distributed uniformly at random in b(0, R − Rs).2 Thus, {xi} is a sequence of
independently and identically distributed (i.i.d.) random vectors with the distribution of xi
being:

fX(xi) =

{
xi

π(R−Rs)2 , when 0 < xi ≤ R−Rs, 0 < ϕi ≤ 2π,

0, otherwise.
(7.1)

The marginal probability density function (PDF) of xi is obtained as: fX(xi) = 2xi/(R−Rs)
2

for 0 < xi ≤ R−Rs and ϕi is a uniform random variable in (0, 2π]. Note that this construction
ensures that all hotspots lie entirely inside the macrocell, i.e., b(xi, Rs) ∩ b(0, R)c = ∅, ∀ i.
We assume that the number of users in the hotspot centered at xi is Nxi , where Type 1:
Nxi = m̄ is fixed and equal for all i = 1, . . . , n and Type 2: {Nxi} is a sequence of i.i.d.
Poisson random variables with mean m̄. These Nxi users are assumed to be located uniformly
at random independently of each other in each hotspot. Thus, the location of a user belonging
to the hotspot at xi is denoted by xi + u, where u ≡ (u, ξ) is a random vector in R2 with
2 For notational simplicity, we use x ≡ ‖x‖, ∀ x ∈ R2.
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PDF:

fU(u) =

{
u
πR2

s
, when 0 < u ≤ Rs, 0 < ξ ≤ 2π

0, otherwise.
(7.2)

The marginal PDF of u is: fU(u) = 2u/R2
s for 0 < u ≤ Rs and ξ is a uniform random variable

in (0, 2π]. We assume that the SBSs are deployed at the center of user hotspots, i.e., at {xi}.
The ABS provides wireless backhaul to these SBSs over mm-wave links. See Fig. 7.1a for
an illustration. Having defined the spatial distribution of SBSs and users, we now define
the typical user for which we will compute the rate coverage probability. The typical user
is a user chosen uniformly at random from the network. The hotspot to which the typical
user belongs is termed as the representative hotspot. We denote the center of representative
hotspot as x, where x = xn, without loss of generality and the location of the typical user
as x + u. For Type 1, the number of users in the representative cluster is Nx = Nxn = m̄.
For Type 2, although Nxi is i.i.d. Poisson, Nx does not follow the same distribution since
the typical user will more likely belong to a hotspot with more number of users [132]. If
n → ∞, Nx follows a weighted Poisson distribution with PMF P(Nx = k) = m̄k−1e−m̄

(k−1)!
,

where, k ∈ Z+. It can be easily shown that if Nx follows a weighted Poisson distribution,
we have Nx = Nxn + 1. Hence, for n → ∞, one can obtain the distribution of Nx by first
choosing a hotspot uniformly at random and then adding one user to it. However, when n
is finite, Nx will lie between Nxn and Nxn + 1 (Nxn ≤ Nx ≤ Nxn + 1). The lower bound on
Nx is trivially achieved when n = 1. Since the actual distribution of Nx for finite number
of hotspots (n > 1) is not tractable, we fix the typical user for Type 2 according to the
following Remark.

Remark 7.1. For Type 2, we first choose a hotspot centered at x uniformly at random
from n hotspots, call it the representative hotspot, and then add the typical user at x + u,
where u follows the PDF in (7.2). Although this process of selecting the typical user is
asymptotically exact when Nxi

i.i.d.∼ Poisson(m̄), ∀ i = 1, 2, . . . , n, and n→∞, it will have
negligible impact on the analysis since our interest will be in the cases where the macrocells
have moderate to high number of hotspots [2].

Propagation assumptions

All backhaul and access transmissions are assumed to be performed in mm-wave spec-
trum. We assume that the ABS and SBS transmit at constant power spectral densi-
ties (PSDs) Pm/W and Ps/W , respectively over a system BW W . The received power
at z is given by PψhL(z,y)−1, where P is a generic variable denoting transmit power
with P ∈ {Pm, Ps}, ψ is the combined antenna gain of the transmitter and receiver, and
L(z,y) = 10((β+10α log10 ‖z−y‖)/10) is the associated pathloss. We assume that all links undergo
i.i.d. Nakagami-m fading. Thus, h ∼ Gamma(m,m−1).
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Blockage model

Since mm-wave signals are sensitive to physical blockages such as buildings, trees and
even human bodies, the LOS and NLOS path-loss characteristics have to be explicitly in-
cluded into the analysis. On similar lines of [114], we assume exponential blocking model.
Each mm-wave link of distance r between the transmitter (ABS/SBS) and receiver (SB-
S/user) is LOS or NLOS according to an independent Bernoulli random variable with LOS
probability p(r) = exp(−r/µ), where µ is the LOS range constant that depends on the ge-
ometry and density of blockages. Since the blockage environment seen by the links between
the ABS and SBS, SBS to user and ABS to user may be very different, one can assume three
different blocking constants {µb, µs, µm}, respectively instead of a single blocking constant
µ. As will be evident in the technical exposition, this does not require any major changes
in the analysis. However, in order to keep our notational simple, we will assume the same µ
for all the links in this chapter. Also, LOS and NLOS links may likely follow different fading
statistics, which is incorporated by assuming different Nakagami-m parameters for LOS and
NLOS, denoted by mL and mNL, respectively.

We assume that all BSs are equipped with steerable directional antennas and the user
equipments have omni-directional antenna. Let G be the directivity gain of the transmitting
and receiving antennas of the BSs (ABS and SBS). Assuming perfect beam alignment, the
effective gains on backhaul and access links are G2 and G, respectively. We assume that
the system is noise-limited, i.e., at any receiver, the interference is negligible compared to
the thermal noise with PSD N0. Hence, the SNR-s of a backhaul link from ABS to SBS at
x, access links from SBS at x to user at x + u, and ABS to user at x + u are respectively
expressed as:

SNRb(x) =
PmG

2hbL(0,x)−1

N0W
, (7.3a)

SNRSBS
a (x + u) =

PsGhsL(x,x + u)−1

N0W
, (7.3b)

SNRABS
a (x + u) =

PmGhmL(0,x + u)−1

N0W
, (7.3c)

where {hb, hs, hm} are the corresponding small-scale fading gains.

User association

We assume that the SBSs operate in closed-access, i.e., users in hotspot can only connect
to the SBS at the hotspot center, or the ABS. This model is inspired by the way smallcells
with closed user groups, for instance the privately owned femtocells, are dropped in the
HetNet models considered by 3GPP [1, Table A.2.1.1.2-1]. Given the complexity of user
association in mm-wave using beam sweeping techniques, we assume a much simpler way
of user association which is performed by signaling in sub-6 GHz, analogous to the current
LTE standard [118]. In particular, the BSs broadcast paging signal using omni-directional
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antennas in sub-6 GHz and the user associates to the candidate serving BS based on the
maximum received power over the paging signals. Since the broadcast signaling is in sub-6
GHz, we assume the same power-law pathloss function for both LOS and NLOS components
with path-loss exponent α due to rich scattering environment. We define the association
event E for the typical user as:

E =

{
1 if Ps‖u‖−α > Pm‖x + u‖−α,
0, otherwise,

(7.4)

where {0, 1} denote association to ABS and SBS, respectively. The typical user at x + u is
under coverage in the downlink if either of the following two events occurs:

E = 1 and SNRb(x) > θ1, SNR
SBS
a (u) > θ2, or,

E = 0 and SNRABS
a (x + u) > θ3, (7.5)

where {θ1, θ2, θ3} are the coverage thresholds for successful demodulation and decoding.

7.2.2 Resource allocation
The ABS, SBSs and users are assumed to be capable of communicating on both mm-

wave and sub-6 GHz bands. The sub-6 GHz band is reserved for control channel and the mm-
wave band is kept for data-channels. The total mm-wave BW W for downlink transmission
is partitioned into two parts, Wb = ηW for backhaul and Wa = (1− η)W for access, where
η ∈ [0, 1) determines the access-backhaul split. Each BS is assumed to employ a simple
round robin scheduling policy for serving users, under which the total access BW is shared
equally among its associated users, referred to alternatively as load on that particular BS. On
the other hand, the backhaul BW is shared amongst n SBSs by either of the three strategies
as follows.

1. Equal partition. This is the simplest partition strategy where the ABS does not require
any load information from the SBSs and divides Wb equally into n splits.

2. Instantaneous load-based partition. In this scheme, the SBSs regularly feed back the
ABS its load information and accordingly the ABS allocates backhaul BW proportional
to the instantaneous load on each small cell.

3. Average load-based partition. Similar to the previous strategy, the ABS allocates back-
haul BW proportional to the load on each small cell. But in this scheme, the SBSs
feed back the ABS its load information after sufficiently long intervals. Hence the
instantaneous fluctuations in SBS load are averaged out.

If the SBS at x gets backhaul BW Ws(x), then

Ws(x) =





Wb

n
, for equal partition,
NSBS

x

NSBS
x +

n−1∑
i=1

NSBS
xi

Wb, for instantaneous load-based partition,
E[NSBS

x ]

E[NSBS
x ]+

n−1∑
i=1

E[NSBS
xi

]

Wb, for average load-based partition,
(7.6)
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where NSBS
x and NSBS

xi
denote the load on the SBS of the representative hotspot and load on

the SBS at xi, respectively. The BW partition is illustrated in Fig. 7.1b.

To compare the performance of these strategies, we define the network performance
metric of interest next.

7.2.3 Downlink data rate
The maximum achievable downlink data rate, henceforth referred to as simply the data

rate, on the backhaul link between the ABS and the SBS, the access link between SBS and
user, and the access link between ABS and user can be expressed as:

RABS
b = Ws(x) log2(1 + SNRb(x)), (7.7a)

RSBS
a = min

(
Wa

NSBS
x

log2(1 + SNRSBS
a (u)),

RABS
b

NSBS
x

)
, (7.7b)

RABS
a =

Wa

NABS
x +

n−1∑
i=1

NABS
xi

log2(1 + SNRABS
a (x + u)), (7.7c)

where Ws(x) is defined according to backhaul BW partition strategies in (7.6) and NABS
x

(NABS
xi

) denotes the load on the ABS due to the macro users of the representative hotspot
(hotspot at xi). In (7.7b), the first term inside the min-operation is the data rate achieved
under no backhaul constraint when the access BW Wa is equally partitioned between NSBS

x

users. However, due to finite backhaul, RSBS
a is limited by the second term.

7.3 Rate coverage probability analysis
In this Section, we derive the expression of rate coverage probability of the typical user

conditioned on its location at x + u and later decondition over them. This deconditioning
step averages out all the spatial randomness of the user and hotspot locations in the given
network configuration. We first partition each hotspot into SBS and ABS association regions
such that the users lying in the SBS (ABS) association region connects to the SBS (ABS).
Note that the formation of these mathematically tractable association regions is the basis of
the distance-dependent load modeling which is one of the major contributions of this work.

7.3.1 Association region and association probability
We first define the association region in the representative user hotspot as follows.

Given the representative hotspot is centered at x, the SBS association region is defined as:
Sx = {x+u ∈ b(x, Rs) : Pm‖x+u‖−α < Psu

−α} and the ABS association area is b(x, Rs)∩Scx.
In the following Proposition, we characterize the shape of Sx.
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Proposition 7.2. The SBS association region Sx for the SBS at x can be written as: Sx =





b

(
(1− k2

p)
−1x, kpx

1−k2
p

)
, 0 < x < kpRs

1+kp
,

b

(
(1− k2

p)
−1x, kpx

1−k2
p

)
∩ b(x, Rs),

kpRs

1+kp
≤ x ≤ kpRs

1−kp ,

b(x, Rs), x > kpRs

1−kp ,

(7.8)

where kp =

(
Ps

Pm

)1/α

.

Proof. Let x = (X1, X2) be the Cartesian representation of x. Let, Sx = {(X1 +t1, X2 +t2)}.
Then, following the definition of Sx, Pm(t21+t22)−α/2 ≤ Ps((t1−X1)2+(t2−X2)2)−α/2 ⇒

(
t1−

X1

1−k2
p

)2

+

(
t2− X2

1−k2
p

)2

≤
(

kpx

1−k2
p

)2

. Thus, {(t1, t2)} = b((1−k2
p)
−1x, kpx/(1−k2

p)). Since, Sx

can not spread beyond b(x, Rs), Sx = b

(
(1−k2

p)
−1x, kpx

1−k2
p

)
∩b(x, Rs). When 0 < x < kp

1+kp
Rs,

b

(
(1−k2

p)
−1x, kpx

1−k2
p

)
⊂ b(x, Rs). Beyond this limit of x, a part of b((1−k2

p)
−1x, kpx/(1−k2

p))

lies outside of b(x, Rs). Finally, when x > kp
1−kpRs, b((1−k2

p)
−1x, kpx/(1−k2

p)) ⊃ b(x, Rs).

This formulation of Sx is illustrated in Fig. 7.2. We now compute the SBS association
probability as follows.

Lemma 7.3. Conditioned on the fact that the user belongs to the hotspot at x, the association
probability to SBS is given by: As(x) =

∫ 2π

0

(
min

(
Rs, x

kp(
√

1−k2
p. sin

2 ξ+kp cos ξ)

1−k2
p

))2

2πR2
s

dξ (7.9)

=





k2
px

2

(1−k2
p)2R2

s
if 0 < x < kp

1+kp
Rs,

C
(
Rs,

kpx

1−k2
p
,
k2
px

1−k2
p

)

πR2
s

if kp
1+kp

Rs ≤ x ≤ kp
1−kpRs,

1 if x > kp
1−kpRs

, (7.10)

where
C(r1, r2, d) = r2

1 tan−1

(
t

d2 + r2
1 − r2

2

)
+ r2

2 tan−1

(
t

d2 − r2
1 + r2

2

)
− t

2

is the area of intersection of two intersecting circles of radii r1, and r2 and distance between
centers d with t = (d+ r1 + r2)

1
2 (d+ r1− r2)

1
2 (d− r1 + r2)

1
2 (−d+ r1 + r2)

1
2 . The association

probability to the ABS is given by Am(x) = 1−As(x).
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Proof. Conditioned on the location of the hotspot center at x, As(x) = P(E = 1|x) =

E
[
1(Pm‖x + u‖−α < Ps‖u‖−α)|x

]
= P(x + u ∈ Sx|x)

= P(Pm(x2 + u2 + 2xu cos ξ)−α/2 < Psu
−α)|x)

= P(u2(1− k2
p)− 2x cos ξk2

pu− k2
px

2 < 0|x)

(a)
= P

(
u ∈

(
0,
xkp
(√

1− k2
p sin2 ξ + kp cos ξ

)

1− k2
p

)
ξ ∈ (0, 2π]

∣∣∣∣x
)

=

∫ 2π

0

∫ Rs

0

1

(
0 ≤ u <

xkp
(√

1− k2
p sin2 ξ + kp cos ξ

)

1− k2
p

)
fU(u)du

1

2π
dξ,

where ξ = arg(u−x) and is uniformly distributed in (0, 2π]. Here, (a) follows from solving the
quadratic inequality inside the indicator function. The last step follows from deconditioning
over u and ξ. Finally, (7.9) is obtained by evaluating the integration over u. Note that, due
to angular symmetry, As(x) = As(x). Alternatively,

As(x) =

∫

Sx
fU(u)du

1

2π
dξ =

|Sx|
πR2

s

.

The final result in (7.10) is obtained by using Proposition 7.2.

In Fig. 7.3, we plot As(x) as a function of x. We now evaluate the coverage probability
of a typical user which is the probability of the occurrence of the events defined in (7.5).

Theorem 7.4. The coverage probability is given by:

Pc =

R−Rs∫

0

(
Pcs(θ1, θ2|x) + Pcm(θ3|x)

)
fX(x)dx, (7.11)

where

Pcs(θ1, θ2|x) =

2π∫

0

umax(x,ξ)∫

0

(
p(x)Fh

(
xαLβN0Wθ1

PmG2
,mL

)
+ (1− p(x))

× Fh
(
xαNLβN0Wθ1

PmG2
,mNL

)(
p(u)Fh

(
uαLβN0Wθ2

PsG
,mL

)

+ (1− p(u))Fh

(
uαNLβN0Wθ2

PsG
,mNL

))
fU(u)

2π
du dξ,

where umax(x, ξ) = min

(
Rs, xkp

√
(1−k2

p sin2 ξ)+kp cos ξ)

1−k2
p

)
and Fh(·) is the complementary cumu-

lative distribution function (CCDF) of Gamma distribution, and Pcm(θ3|x) =
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2π∫

0

Rs∫

umax(x,ξ)

(
p(κ(x, u, ξ))Fh

(
κ(x, u, ξ)αLβN0Wθ3

PmG
,mL

)

+ (1− p(κ(x, u, ξ)))Fh

(
κ(x, u, ξ)αNLβN0Wθ3

PmG
,mNL

))
fU(u)du dξ

2π
,

where κ(x, u, ξ) = (x2 + u2 + 2xu cos ξ)1/2.

Proof. Conditioned on the location of the typical user at u = (u, ξ) and its hotspot center
at x, Pcs(θ1, θ2|x) =

P(SNRSBS
a (u) > θ2, SNRb(x) > θ1, E = 1|x)

= P(SNRSBS
a (u) > θ2, E = 1|x)P(SNRb(x) > θ1|x)

(a)
= E

[(
p(u)P

(
PsGβ

−1hs(L)u
−αL

N0W
> θ2

)
+ (1− p(u))P

(
Psβ

−1Ghs(NL)u
−αNL

N0W
> θ2

))

× 1

(
u ∈

(
0,
xkp
(√

1− k2
p sin2 ξ + kp cos ξ

)

1− k2
p

)
, ξ ∈ (0, 2π]

)∣∣∣∣x
]

×
(
p(x)P

(
Pmβ

−1G2hb(L)x
−αL

N0W
> θ1|x

)

+ (1− p(x))P
(
Pmβ

−1G2hb(NL)x
−αNL

N0W
> θ1|x

))
.

Here (a) follows from step (a) in the proof of Lemma 7.3. The final form is obtained by
evaluating the expectation with respect to u and ξ. We can similarly obtain Pcm(θ3|x) =

P(SNRABS
a (x + u) > θ3, E = 0|x)

= E
[
p
(√

x2 + u2 + 2xu cos ξ
)
P
(
PmGβ

−1hm(L)(x
2 + u2 + 2xu cos ξ)−

αL
2

N0W
> θ2

)

+ (1− p(
√
x2 + u2 + 2xu cos ξ))× P

(
Pmβ

−1Ghm(NL)

N0W
(x2 + u2 + 2xu cos ξ)−

αNL
2 > θ2

)∣∣∣∣x
]
,

followed by deconditioning over u and ξ.

As expected, coverage probability is the summation of two terms, each corresponding
to the probability of occurrences of the two mutually exclusive events appearing in (7.5).

7.3.2 Load distributions
While the load distributions for the PPP-based models are well-understood [24, 129],

they are not directly applicable to the 3GPP-inspired finite model used in this chapter.
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Consequently, in this Section, we provide a novel approach to characterize the ABS and SBS
load for this model. As we saw in (7.7c), the load on the ABS has two components, one is
due to the contribution of the number of users of the representative hotspot connecting to
the ABS (denoted by NABS

x ) and the other is due to the macro users of the other clusters,
which we lump into a single random variable, NABS

o =
∑n−1

i=1 N
ABS
xi

. On the other hand,
NSBS

x and NSBS
o =

∑n−1
i=1 N

SBS
xi

respectively denote the load on the SBS at x and sum load of
all SBSs except the one at x. First, we obtain the PMFs of NABS

x and NSBS
x using the fact

that given the location of the representative hotspot centered at x, each user belongings to
the association regions Sx or b(x, Rs) ∩ Scx according to an i.i.d. Bernoulli random variable.

Lemma 7.5. Given the fact that the representative hotspot is centered at x, load on the
ABS due to the macro users in the hotspot at x (NABS

x ) and load on the SBS at x (NSBS
x )

are distributed as follows:

Type 1 (Nxi = m̄, ∀ i = 1, . . . , n).

P(NABS
x = k|x) =

(
m̄− 1

k − 1

)
Am(x)k−1As(x)m̄−k, (7.12a)

P(NSBS
x = k|x) =

(
m̄− 1

k − 1

)
As(x)k−1Am(x)m̄−k, (7.12b)

where k = 1, 2, . . . , m̄.

Type 2 (Nxi
i.i.d.∼ Poisson(m̄), ∀ i = 1, . . . , n).

P(NABS
x = k|x) =

(m̄Am(x))k−1

(k − 1)!
e−m̄Am(x), (7.13a)

P(NSBS
x = k|x) =

(m̄As(x))k−1

(k − 1)!
e−m̄As(x), (7.13b)

where k ∈ Z+.

Proof. Conditioned on the fact that the representative hotspot is centered at x and the
typical user connects to the ABS, NABS

x = 1 +NABS,o
x , where NABS,o

x is the load due to rest
of the users in the representative hotspot connecting to the ABS, where, NABS,o

x =

{
E[
∑Nx−1

j=1 1(Pm‖x + uj‖−α > Ps‖uj‖−α)|x] for Type 1,
E[
∑Nx

j=1 1(Pm‖x + uj‖−α > Ps‖uj‖−α)|x] for Type 2.

Note that the difference between the above two expressions is the upper bound of the sum-
mation. Recall that, Nx = Nxn = m̄ for Type 1, and Nx = Nxn + 1 for Type 2 (by
Remark 7.1). Hence, the number of other users except the typical user in the representative
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cluster is Nx − 1 for Type 1 and Nx for Type 2. For Type 1, the conditional moment
generating function (MGF) of NABS,o

x is:

E[esN
ABS,o
x |x] = E

[ m̄−1∏

j=1

es1(Pm‖x+uj‖−α>Ps‖uj‖−α)|x
]

=
m̄−1∏

j=1

E[es1(Pm‖x+uj‖−α>Ps‖uj‖−α)|x]

=
m̄−1∏

j=1

esP(Pm‖x + uj‖−α > Ps‖uj‖−α|x) + P(Ps‖uj‖−α > Pm‖x + uj‖−α|x)

= (Am(x)es + (1−Am(x)))m̄−1,

which is the MGF of a Binomial distribution with (m̄−1,Am(x)). Here, the first step follows
from the fact that uj-s are i.i.d. Similarly for Type 2,

E[esN
ABS,o
x |x] = E

[ Nx∏

j=1

E[es1(Pm‖x+uj‖−α>Ps‖uj‖−α)|x]

]

= E[(Am(x)es + (1−Am(x)))Nx ]

=
∞∑

k=0

(Am(x)es + (1−Am(x)))k
m̄ke−m̄

k!
= em̄Am(x)(es−1),

which is the MGF of a Poisson distribution with mean m̄Am(x). From the PMF of NABS,o
x ,

one can easily obtain the PMF of NABS
x . The PMF of NSBS

x can be obtained on similar lines
by altering the inequality in the first step of the above derivation.

We present the first moments of these two load variables in the following Corollary which
will be required for the evaluation of the rate coverage for the average load-based partition
and the derivation of easy-to-compute approximations of rate coverage in the sequel.

Corollary 7.6. The conditional means of NABS
x and NSBS

x given the center of the represen-
tative hotspot at x are

Type 1: E[NABS
x ] = (m̄− 1)Am(x) + 1,E[NSBS

x ] = (m̄− 1)As(x) + 1,

Type 2: E[NABS
x ] = m̄Am(x) + 1,E[NSBS

x ] = m̄As(x) + 1.

We now obtain the PMFs of NABS
o and NSBS

o in the following Lemma. Note that, since
xi-s are i.i.d., NABS

o and NSBS
o are independent of x. In what follows, the exact PMF of NABS

o

(NSBS
o ) is in the form of (n− 1)-fold discrete convolution and hence is not computationally

efficient beyond very small values of n. We present an alternate easy-to-use expression of this
PMF by invoking central limit theorem (CLT). In the numerical results Section, we verify
that this approximation is tight even for moderate values of n.
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Lemma 7.7. Given the fact that the typical user belongs to a hotspot at x, load on the
ABS due to all other n − 1 hotspots is distributed as: NABS

o −υm

σm
∼ N (0, 1) (for large n)

and sum of the loads on the other SBSs at x1,x2, . . . ,xn−1 is distributed as: NSBS
o −υs

σs
∼

N (0, 1) (for large n), where N (0, 1) denotes the standard normal distribution, υm = (n −
1)m̄E[Am(X)], υs = (n− 1)m̄E[As(X)], and

for Type 1, σ2
m = (n− 1)

[
m̄E[Am(X)As(X)] + m̄2Var[Am(X)]

]
= σ2

s ,

for Type 2, σ2
m = (n− 1)

[
m̄E[Am(X)] + m̄2Var[Am(X)]

]
,

σ2
s = (n− 1)

[
m̄E[As(X)] + m̄2Var[As(X)]

]
.

Here,

E[Am(X)] =

∫ R−Rs

0

Am(x)fX(x)dx, and

Var[Am(X)] =

R−Rs∫

0

(
Am(x)

)2
fX(x)dx− (E[Am(X)])2,

and E[As(X)], Var[As(X)] can be similarly obtained by replacing Am(X) with As(X) in the
above expressions.

Proof. Following the proof of Lemma 7.5, conditioned on the location of a hotspot at xi,
NABS

xi
becomes (i) Type 1. a Binomial random variable with (m̄,Am(xi)), or (ii) Type 2. a

Poisson random variable with m̄Am(xi). Now, NABS
o =

∑n−1
i=1 Exi [N

ABS
xi

], where Exi [N
ABS
xi

]-s
are i.i.d. with P(Exi [N

ABS
xi

] = k) =
{∫ R−Rs

0

(
m̄
k

)
Am(xi)

kAs(xi)
m̄−kfX(xi)dxi, for Type 1∫ R−Rs

0
e−m̄Am(xi)(m̄Am(xi))

k

k!
fX(xi)dxi, for Type 2

,

where k ∈ Z+. The exact PMF of NABS
o is obtained by the (n− 1)-fold discrete convolution

of this PMF. We avoid this complexity of the exact analysis by first characterizing the mean
and variance of NABS

o as: υm = E[NABS
o ] =

∑n−1
i=1 E[Exi [N

ABS
xi

]] = (n−1)m̄Am(X), and σ2
m =

Var[NABS
o ]

(a)
=

n−1∑

i=1

Var[Exi [N
ABS
xi

]]

=
n−1∑

i=1

E[(Exi [N
ABS
xi

])2]− (E[Exi [N
ABS
xi

]])2

=





∑n−1
i=1

∫ R−Rs

0
(m̄Am(xi)As(xi) + (m̄Am(xi))

2)

fX(xi)dxi − (m̄E[Am(X)])2, for Type 1∑n−1
i=1

∫ R−Rs

0
(m̄Am(xi) + (m̄Am(xi))

2)fX(xi)dxi

−(m̄E[Am(X)])2, for Type 2

,
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where (a) is due to the fact that Exi [N
ABS
xi

]-s are i.i.d. The final result follows from some
algebraic manipulation. Having derived the mean and variance of NABS

o , we invoke CLT to
approximate the distribution of NABS

o since it can be represented as a sum of i.i.d. random
varables with finite mean and variance. Similar steps can be followed for the distribution of
NSBS

o .

7.3.3 Rate coverage probability
We first define the downlink rate coverage probability (or simply, rate coverage) as

follows.

Definition 7.8 (Rate coverage probability). The rate coverage probability of a link with
BW W̃ is defined as the probability that the maximum achievable data rate (R) exceeds a
certain threshold ρ, i.e., P(R > ρ) =

P
(
W̃ log2(1 + SNR) > ρ

)
= P(SNR > 2ρ/W̃ − 1). (7.14)

Hence, we see that the rate coverage probability is the coverage probability evaluated
at a modified SNR-threshold. We now evaluate the rate coverage probability for different
backhaul BW partition strategies for a general distribution of Nxi and Nx in the following
Theorem. We later specialize this result for Types 1 and 2 for numerical evaluation.

Theorem 7.9. The rate coverage probability for a target data rate ρ is given by:

Pr = Prm + Prs, (7.15)

where Prm (Prs) denotes the ABS rate coverage (SBS rate coverage) which is the probability
that the typical user is receiving data rate greater than or equal to ρ and is served by the
ABS (SBS). The ABS rate coverage is given by:

Prm =

∞∫

−∞

R−Rs∫

0

ENABS
x

[
Pcm

(
2
ρ(t+NABS

x )

Wa − 1|x
)]
fX(x)dx

1

σm

√
2π
e
− (t−υm)2

2σ2
m dt. (7.16)

The SBS rate coverage depends on the backhaul BW partition strategy. For equal partition,

Prs =

R−Rs∫

0

ENSBS
x

[
Pcs

(
2
ρnNSBS

x
Wb − 1, 2

ρNSBS
x
Wa − 1

∣∣x
)]
fX(x)dx, (7.17)

for instantaneous load-based partition,

Prs =

∞∫

−∞

R−Rs∫

0

ENSBS
x

[
Pcs

(
2
ρ(NSBS

x +t)

Wb − 1, 2
ρNSBS

x
Wa − 1

∣∣x
)]
fX(x)dx

1

σs

√
2π
e
− (t−υs)2

2σ2
s dt, (7.18)
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and for average load-based partition,

Prs =

∞∫

−∞

R−Rs∫

0

ENSBS
x

[
Pcs

(
2

ρNSBS
x (E[NSBS

x ]+m̄t)
WbE[NSBS

x ] − 1,

2
ρNSBS

x
Wa − 1

∣∣x
)]
fX(x)dx

e−

(
t−(n−1)E[As(X)]

)2

2(n−1)Var[As(X)]

√
2π(n− 1)Var[As(X)]

dt. (7.19)

Proof. First we evaluate Prm = Prm = P(RABS
a > ρ) =

P
(

Wa

NABS
x +NABS

o

log2(1 + SNRABS
a (x + u)) > ρ

)

= P
(
SNRABS

a (x + u) > 2
ρ(NABS

x +NABS
o )

Wa − 1

)

= Pcm

(
2
ρ(NABS

x +NABS
o )

Wa − 1

)
,

where, the first step follows from (7.7c). The final form is obtained by deconditioning with
respect to NABS

x , NABS
o and x. Now for equal partition, Prs = P(RSBS

a > ρ) =

P
(

Wb

NSBS
x n

log2(1 + SNRb(x)) > ρ

)
P
(

Wa

NSBS
x

log2(1 + SNRSBS
a (u)) > ρ

)

= P
(
SNRb(x) > 2

ρnNSBS
x

Wb − 1

)
P
(
SNRSBS

a (u) > 2
ρNSBS

x
Wa − 1

)

= E
[
Pcs

(
2
ρnNSBS

x
Wb − 1, 2

ρNSBS
x
Wa − 1

∣∣x
)]
.

Here step (a) follows from (7.7b) and the fact that the two rate terms appearing under the
min operator are independent. The final form is obtained by deconditioning with respect to
NSBS

x and x. For instantaneous load-based partition,

Prs = P
(

Wb

NSBS
x +NSBS

o

log2(1 + SNRb(x)) > ρ

)
P
(

Wa

NSBS
x

log2(1 + SNRSBS
a (u)) > ρ

)

= P
(
SNRb(x) > 2

ρ(NSBS
x +NSBS

o )

Wb − 1

)
P
(
SNRSBS

a (u) > 2
ρNSBS

x
Wa − 1

)

= E
[
Pcs

(
2
ρ(NSBS

x +NSBS
o )

Wb − 1, 2
ρNSBS

x
Wa − 1

∣∣x
)]
.

The final form is obtained by deconditioning with respect to NSBS
x , NSBS

o and x. For average
load-based partition, Prs =
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P
(

WbE[NSBS
x ]

NSBS
x (E[NSBS

x ] +
∑n−1

i=1 E[NSBS
xi

])
log2(1 + SNRb(x)) > ρ

)
×

P
(

Wa

NSBS
x

log2(1 + SNRSBS
a (u)) > ρ

)

= P
(

WbE[NSBS
x ]

NSBS
x (E[NSBS

x ] + m̄
∑n−1

i=1 As(xi))
log2(1 + SNRb(x)) > ρ

)
×

P
(

Wa

NSBS
x

log2(1 + SNRSBS
a (u)) > ρ

)
,

where the last step is obtained by using the fact that E[NSBS
xi

] = m̄E[As(X)] and E[NSBS
x ]

depends on the underlying distribution of Nx. Since the random variable
∑n−1

i=1 As(xi) is
a summation of n − 1 i.i.d. random variables with mean (n − 1)E[As(X)] and variance
(n − 1)Var[As(X)], we again invoke CLT instead of resorting to the exact expression that
would have involved the (n− 1)-fold convolution of the PDF of As(X).

Note that the key enabler of the expression of Pr in Theorem 7.9 is the fact that the
system is considered to be noise-limited. Including the SBS interference into analysis is
not straightforward from this point since it would involve coupling between the coverage
probability and load since both are dependent on the locations of the other n−1 SBSs. Having
derived the exact expressions of rate coverage in Theorem 7.9, we present approximations of
these expressions by replacing (i) NABS

x in Prm with its mean E[NABS
x ], and (ii) NSBS

x in Prs

with its mean E[NSBS
x ] in the following Lemma.

Lemma 7.10. The ABS rate coverage can be approximated as

Prm =

∞∫

−∞

R−Rs∫

0

Pcm

(
2
ρ(t+E[NABS

x ])

Wa − 1|x
)
fX(x)dx

e
− (t−υm)2

2σ2
m

σm

√
2π

dt. (7.20)

The SBS rate coverage can be approximated as follows. For equal partition,

Prs =

R−Rs∫

0

Pcs

(
2
ρnE[NSBS

x ]

Wb − 1, 2
ρE[NSBS

x ]

Wa − 1
∣∣x
)
fX(x)dx, (7.21)

for instantaneous load-based partition,

Prs =

∞∫

−∞

R−Rs∫

0

Pcs

(
2
ρ(E[NSBS

x ]+t)

Wb − 1, 2
ρE[NSBS

x ]

Wa − 1
∣∣x
)
fX(x)dx

e
− (t−υs)2

2σ2
s

σs

√
2π

dt, (7.22)
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Table 7.1: Key system parameters

Notation Parameter Value
Pm, Ps BS transmit powers 50, 20 dBm
αL, αNL Path-loss exponent 2.0, 3.3
β Path loss at 1 m 70 dB
G Main lobe gain 18 dB
µ LOS range constant 170 m

N0W Noise power -174 dBm/Hz+ 10 log10W
+10 dB (noise-figure)

mL,mNL Parameter of Nakagami distribution 2, 3
R, Rs Macrocell and hotspot radius 200 m, 30 m
m̄ Average number of users per hotspot 5
ρ Rate threshold 50 Mbps

and for average load-based partition,

Prs =

∞∫

−∞

R−Rs∫

0

Pcs

(
2
ρ(E[NSBS

x ]+m̄t)
Wb − 1, 2

ρE[NSBS
x ]

Wa − 1
∣∣x
)
fX(x)dx

e−

(
t−(n−1)E[As(X)]

)2

2(n−1)Var[As(X)]

√
2π(n− 1)Var[As(X)]

dt.

(7.23)

We now specialize the result of Theorem 7.9 for Types 1 and 2 in the following Corol-
laries.

Corollary 7.11. For Type 1, i.e., when Nxi = m̄, ∀ i = 1, . . . , n, the ABS rate coverage is

Prm =
m̄∑

k=1

(
m̄− 1

k − 1

) ∞∫

−∞

R−Rs∫

0

Pcm

(
2
ρ(t+k)
Wa − 1|x

)

×Am(x)k−1As(x)m̄−kfX(x)dx
1

σm

√
2π
e
− (t−υm)2

2σ2
m dt. (7.24)

The SBS rate coverages for the three backhaul BW parition strategies are expressed as follows.
(i) For equal partition,

Prs =
m̄∑

k=1

(
m̄− 1

k − 1

) R−Rs∫

0

Pcs

(
2
ρnk
Wb − 1, 2

ρk
Wa − 1

∣∣x
)
As(x)k−1Am(x)m̄−kfX(x)dx, (7.25)

(ii) for instantaneous load-based partition,
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Prs =
m̄∑

k=1

(
m̄− 1

k − 1

) ∞∫

−∞

R−Rs∫

0

Pcs

(
2
ρ(k+t)
Wb − 1, 2

ρk
Wa − 1

∣∣x
)

×As(x)k−1Am(x)m̄−kfX(x)dx
e
− (t−υs)2

2σ2
s

σs

√
2π

dt, (7.26)

and (iii) for average load-based partition,

Prs =
m̄∑

k=1

(
m̄− 1

k − 1

) ∞∫

−∞

R−Rs∫

0

Pcs

(
2
ρk(1+(m̄−1)As(x)+m̄t)
Wb(1+(m̄−1)As(x)) − 1, 2

ρk
Wa − 1

∣∣x
)
As(x)k−1Am(x)m̄−k

× fX(x)dx
e−

(
t−(n−1)E[As(X)]

)2

2(n−1)Var[As(X)]

√
2π(n− 1)Var[As(X)]

dt. (7.27)

Proof. The result can be obtained from Theorem 7.9 by using the PMFs of NABS
x , NSBS

x ,
NABS
o and NABS

o from Lemmas 7.5 and 7.7 and substituting E[NSBS
x ] from Corollary 7.6 for

Type 1.

Corollary 7.12. For Type 2, i.e., when Nxi
i.i.d.∼ Poisson(m̄), ∀ i = 1, . . . , n, the ABS rate

coverage is expressed as

Prm =
∞∑

k=1

m̄k−1

(k − 1)!

∞∫

−∞

R−Rs∫

0

(Am(x))k−1e−m̄Am(x)

× Pcm

(
2
ρ(t+k)
Wa − 1|x

)
fX(x)dx

1

σm

√
2π
e
− (t−υm)2

2σ2
m dt. (7.28)

The SBS rate coverages for the three backhaul BW parition strategies are expressed as follows.
(i) For equal partition,

Prs =
∞∑

k=1

m̄k−1

(k − 1)!

R−Rs∫

0

(As(x))k−1e−m̄As(x)Pcs

(
2
ρnk
Wb − 1, 2

ρk
Wa − 1

∣∣x
)
fX(x)dx, (7.29)

(ii) for instantaneous load-based partition,

Prs =
∞∑

k=1

m̄k−1

(k − 1)!

∞∫

−∞

R−Rs∫

0

(As(x))k−1e−m̄As(x)

× Pcs

(
2
ρ(k+t)
Wb − 1, 2

ρk
Wa − 1

∣∣x
)
fX(x)dx

1

σs

√
2π
e
− (t−υs)2

2σ2
s dt, (7.30)
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and (iii) for average load-based partition,

Prs =
∞∑

k=1

m̄k−1

(k − 1)!

∞∫

−∞

R−Rs∫

0

(As(x))k−1e−m̄As(x)Pcs

(
2
ρk(1+m̄As(x)+m̄t)
Wb(1+m̄As(x)) − 1, 2

ρk
Wa − 1

∣∣x
)

× fX(x)dx
1√

2π(n− 1)Var[As(X)]
e−

(
t−(n−1)E[As(X)]

)2

2(n−1)Var[As(X)] dt. (7.31)

Proof. The result can be similarly obtained from Theorem 7.9 by using the PMFs of NABS
x ,

NSBS
x , NABS

o andNABS
o from Lemmas 7.5 and 7.7, and substituting E[NSBS

x ] from Corollary 7.6
for Type 2.

7.4 Results and discussion
7.4.1 Trends of rate coverage

In this Section we verify the accuracy of our analysis of rate coverage with Monte
Carlo simulations of the network model delineated in Section 9.4.1 with parameters listed in
Table 8.1. For each simulation, the number of iterations was set to 106. Since Pr fun-
damentally depends upon SNR, we first plot the cumulative density function (CDF) of
SNRs without beamforming in Fig. 7.5, averaged over user locations. Precisely we plot
Ex

[
P
(
hmPm‖x‖−α

N0W
< θ
)]

=
∫ R−Rs

0
Pcm(θ|x)fX(x)dx and Eu

[
P
(
hsPs‖u‖−α

N0W
< θ
)]

= Pcs(−∞, θ|x),
where Pcm and Prs were defined in Theorem 7.4 from simulation and using our analytical re-
sults and observe a perfect match. We now plot the rate coverages for different user distribu-
tions (Types 1 and 2) for three different backhaul BW partition strategies in Figs. 7.4a-7.4c.
Recall that one part of ABS and SBS load was approximated using CLT in Lemma 7.7 for
efficient computation. Yet, we obtain a perfect match between simulation and analysis even
for n = 10 for Type 1 and Type 2. Further, we observe that, (i) Pr = 0 for η = 1 since this
corresponds to the extreme when no BW is given to access links, and (ii) the rate coverage
is maximized for a particular access-backhaul BW split (η∗ = arg max{η} Pr). Also note that
the rate coverage trends for Types 1 and 2 are the same, although Pr for Type 1 is slightly
higher than Pr of Type 2 since the representative cluster, on average, has more number of
users in Type 2 than in Type 1 (see Corollary 7.6). However, for space constraint, we only
present the results of Type 1 for subsequent discussions.

Comparison of backhaul BW partition strategies

In Fig. 7.6, we overlay Pr for three different backhaul BW partition strategies. We
observe that the maximum rate coverage, Pr∗ = Pr(η

∗) (marked as ‘*’ in the figures) for
instantaneous load-based partition dominates Pr∗ in average load-based partition, and Pr

∗ in
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(b) Instantaneous load-based partition.
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Figure 7.4: Rate coverage probability for different bandwidths (ρ = 50 Mbps, n = 10) for
Types 1 and 2 obtained by Corollaries 7.11 and 7.12. Lines and markers indicate theoretical
and simulation results, respectively. Theoretical results for Types 1 and 2 are obtained from
Corollaries 7.11 and 7.12, respectively.
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Figure 7.5: The CDF plot of SNR from the ABS and SBS (Pm = 50 dBm, Ps = 20 dBm).
The markers indicate empirical CDF obtained from Monte Carlo simulations.
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Figure 7.6: Comparison of backhaul partition strategies for Type 1 (ρ = 50 Mbps, n = 10).

144



7.4. Results and discussion

0 0.2 0.4 0.6 0.8 1

Access-Backhaul Partition (η)

0

0.2

0.4

0.6

0.8

1

R
a
te

co
v
er
a
ge

p
ro
b
a
b
il
it
y
(P

r
) Instantaneous Load-based Partition

Average Load-based Partition
Equal Partition

Figure 7.7: Comparision of backhaul BW parition strategies (ρ = 50 Mbps, n = 10,W = 600
MHz) for Type 1 and µ = 30 m. The results are obtained from Corollary 7.11.
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Figure 7.8: Comparison of the exact expression (Corollary 7.11) and approximate expression
(Lemma 7.10) of rate coverage probability for Type 1 (ρ = 50 Mbps, W = 600 MHz,
n = 10). Lines and markers indicate exact and approximate results, respectively.
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Figure 7.9: Rate coverage for different numbers of users per hotspot for Type 1 (W = 600
MHz, ρ = 50 Mbps). The values of Pr are computed using Lemma 7.10.

average load-based partition dominates Pr∗ in equal partition. Also note that η∗ is different
for different combination of BW partition strategy and W . We further compared these three
strategies in a high blocking environment in Fig. 7.7 by setting µ = 30 m and observe the
same ordering of performance of the three strategies. As expected, Pr is in general lower
for this case. That said, it should be kept in mind that instantaneous load-based partition
requires more frequent feedback of the load information from the SBSs and hence has the
highest signaling overhead among the three strategies. The average load-based partition
requires comparatively less signaling overhead since it does not require frequent feedback.
On the other hand, equal partition does not have this overhead at all. This motivates an
interesting performance-complexity trade-off for the design of cellular networks with IAB.

Effect of system BW

We observe the effect of increasing system BW on rate coverage in Fig 7.6. As expected,
Pr increases asW increases. However, the increment of Pr∗ saturates for very high values ofW
since high noise power degrades the link spectral efficiency. Another interesting observation
is that starting from η = 0 to η∗, Pr does not increase monotonically. This is due to the fact
that sufficient BW needs to be steered from access to backhaul so that the network with
IAB performs better than the macro-only network (corresponding to η = 0).

Accuracy of approximation

We now plot Pr obtained by the approximations in Lemma 7.10 in Fig. 7.8. It is
observed that the approximation is surprisingly close to the exact values of Pr obtained
by Corollary 7.11. Motivated by the tightness of the approximation, we proceed with the
easy-to-compute expressions of Pr obtained by Lemma 7.10 instead of the exact expressions
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Figure 7.10: Total cell-load upto which IAB-enabled network outperforms macro-only net-
work (for instantaneous load-based partition).

(Corollary 7.11) for the metrics evaluated in the sequel, namely, critical load, median rate,
and 5th percentile rate. It is important to note that each numerical evaluation of these metrics
requires high number of computations of Pr and is highly inefficient if Pr is computed by
simulation, which further highlights the importance of analytical expressions derived in this
chapter.

7.4.2 Critical load
We plot the variation of Pr with m̄ in Fig. 7.9. We observe that as m̄ increases, more

number of users share the BW and as a result, Pr decreases. However, the optimality of Pr
completely disappears for very large value of m̄ (10 < m̄ < 20 in this case). This implies that
for given BW W there exists a critical total cell-load (nm̄) beyond which the gain obtained
by the IAB architecture completely disappears. Observing Fig. 7.10, we find that the critical
total cell-load varies linearly with the system BW. The reason of the existence of the critical
total cell-load can be intuitively explained as follows. Recall that the SBS rate RSBS

a was
limited by the backhaul constraint RABS

b /NSBS
x . When m̄ is high, NSBS

x is also high and this
puts stringent backhaul constraint on RSBS

a . Hence, an ABS can serve more users by direct
macro-links at the target rate instead of allocating any backhaul partition.

7.4.3 Median and 5th percentile rates
We now shift our attention to two more performance metrics of interest, the median

(50th percentile) and 5th percentile rate, which are denoted as ρ50 and ρ95, respectively. These
rates are defined as the values where the rate CDF attains 0.5 and 0.05, respectively, i.e.,
Pr = 0.5 at ρ = ρ50 and Pr = 0.95 at ρ = ρ95. Figs. 7.11 and 7.12 illustrate ρ50 and ρ95
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Figure 7.11: Median rate for Type 1 for instantaneous load-based partition (n = 10).
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Figure 7.12: 5th percentile rate for Type 1 for instantaneous load-based partition (n = 10).
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Figure 7.13: Median rate for Type 1 for different backhaul BW partition strategies (n = 10,
W = 600 MHz).
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Figure 7.14: 5th percentile rate for Type 1 for different backhaul BW partition strategies
(n = 10, W = 600 MHz).
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respectively for different W . We first observe that for a given η, these rates increase linearly
with W . This is because of the fact that in all the expressions of rate coverage, ρ and W
appear as a ratio (ρ/W ). Thus, once we find a desired rate coverage at a particular ρ for
a given W , same rate coverage will be observed for kW at target data rate kρ (where k is
a positive constant). Further, we notice that the median rate is relatively flat around the
maximum compared to the 5th percentile rate. Also, the optimal η does not vary significantly
(stays close to 0.4 in our setup) for median and 5th percentile rates. In Figs. 7.13 and 7.14,
we have compared the three backhaul BW partition strategies in terms of these two rates.
As expected, the ordering in performance is similar to the one observed for Pr∗. Interestingly,
from Fig. 7.14, it appears that the average and instantaneous load-based partition policies
have almost similar performance in terms of 5th percentile rate. This is because of the fact
that ρ95 is towards the tail of the rate distribution which is not significantly affected by
difference between instantaneous or average load. However, the performance gap becomes
prominent once median rate is considered.

7.5 Summary
In this chapter, we proposed the first 3GPP-inspired analytical framework for two-

tier mm-wave HetNets with IAB and investigated three backhaul BW partition strategies.
In particular, our model was inspired by the spatial configurations of the users and BSs
considered in 3GPP simulation models of mm-wave IAB, where the SBSs are deployed at
the centers of user hotspots. Under the assumption that the mm-wave communication is noise
limited, we evaluated the downlink rate coverage probability. As a key intermediate step, we
characterized the PMFs of load on the ABS and SBS for two different user distributions per
hotspot. Our analysis leads to two important system-level insights: (i) for three performance
metrics namely, downlink rate coverage probability, median rate, and 5th percentile rate, the
existence of the optimal access-backhaul bandwidth partition splits for which the metrics
are maximized, and (ii) maximum total cell-load that can be supported using the IAB
architecture.
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8

Load Balancing in Integrated Access
and Backhaul

8.1 Introduction
Aggressive frequency reuse achieved through network densification is regarded as one

of the most effective ways of increasing network capacity. The introduction of low power
SBSs has made it possible, in principle, to implement this at large scale in cellular networks.
Despite all the promising gains, the number of SBSs actually deployed in practice has lagged
the market estimates [133]. This is a direct consequence of the challenges involved in provid-
ing reliable backhaul to tens of thousands of these SBSs. While it is not viable to connect
all the SBSs to the network core with the traditional fiber backhaul, the wireless backhaul
solutions have not also been widely adopted due to the spectrum shortage at sub-6 GHz.
However, thanks to the availability of huge spectrum in mm-wave, it is possible to achieve
fiber-like performance on the MBS-SBS backhaul links while keeping sufficient bandwidth
for the base station (BS)-user access links. Further, the access and backhaul networks can
be tightly integrated to manage the dynamic traffic demand of the HetNet by proper re-
source partitioning within the access and backhaul links [21,24,134]. This IAB architecture
introduces several new modeling aspects which were not present in the conventional HetNet
models with no backhaul constraints on the SBSs. For instance, the end-user data rate is
affected by the rate achievable on the wireless backhaul links and the number of users and
SBSs sharing the available BW which is significantly different from the number of users
served by the BSs (also known as the load on the BSs) in the conventional networks. In
this chapter, we capture these unique IAB characteristics by designing the first stochastic
geometry-based multi-cell framework for a two-tier IAB-enabled mm-wave network where
the MBSs serve the users and SBSs from the same pool of spectral resources. Using this
framework, we seek the answers to the following questions: (i) Should the resources be split
between access and backhaul a priori or allocated dynamically based on the load? (ii) How
do the data rates change with network densification under backhaul constraints imposed by
IAB? and (iii) How effective is offloading traffic from MBSs to SBSs in an IAB setting?

8.1.1 Background and related works
Due to the availability of huge bandwidth and the use of noise-limited directional trans-

mission in mm-wave, 5G is envisioning the integration of mm-wave wireless backhaul net-
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work and RAN such that the same spectral resources and infrastructure could be used for
both [112]. This emerging IAB architecture has motivated a lot of recent research activi-
ties, such as finding optimal routing and scheduling strategies in a mm-wave IAB network
[135–137], end-to-end network simulator design [138], and finding optimal user association
schemes for HetNets with IAB [139]. The existing works on IAB mostly ignore the effect
of network topology and its interplay with user traffic, which collectively have a significant
impact on the signal-to-interference-and-noise-ratios (SINRs) of access and backhaul links
as well as the loads on different BSs. Such spatial interactions can be naturally captured
by stochastic geometry-based models [21], where the BS and user locations are modeled as
point processes, most commonly the Poisson point processes (PPPs). These models have
yielded tractable expressions of network performance metrics such as coverage [55,140], cell
load [141] and rate [24, 57] for sub-6 GHz networks. However, most of the prior works in
this direction focus on the access network performance without incorporating any back-
haul capacity constraints. Some notable works that do include backhaul constraints are
[126–128, 130, 131, 142], where [127, 128, 130, 131, 142] characterize the network performance
in terms of data rate and [126] in terms of delay.

These stochastic geometry-based models, initially applied to sub-6 GHz networks, have
been extended to the coverage analysis for mm-wave networks [113–115]. However, none
of these works consider the impact of limited backhaul capacity (of which IAB is a special
case). In fact, the stochastic geometry-based models for mm-wave IAB are quite sparse
with [129, 134] being the only notable related works. While [134] focused on a single macro
cell of a two-tier mm-wave IAB, [129] presents a stochastic geometry-based multi-cell model
of a single-tier mm-wave IAB, where the BSs and users are distributed as PPPs. As will be
evident in the sequel, none of these models is sufficient to analyze the rate performance of
IAB in a mm-wave mutli-cell multi-tier network. In particular, the aspects of load balancing,
which is one of the key flexibilities of HetNets [24], has never been studied in a multi-cell
IAB-enabled HetNet setting.

Before we state our main contributions, it would be instructive to discuss the funda-
mental challenges involved in developing an analytical framework for mm-wave IAB-enabled
HetNets. First, to evaluate the coverage probabilities, we need to consider the joint SINR

statistics for the SBS-user access link and SBS-MBS backhaul link which is difficult to do
in any stochastic geometry setup in general. Second, instead of SINR-based coverage, rate
is a more meaningful metric for the performance evaluation of IAB for which one needs to
take into account both the SINR and the cell loads. Now the load modeling requires the
characterization of the association cells of the BSs which in mm-waves are fundamentally
different from the relatively well-understood association cells in the sub-6 GHz due to the
sensitivity of mm-wave propagation to blockages. The existing approach for blockage mod-
eling is to assume that each link undergoes independent blocking. This simple assumption
turns out to be reasonably accurate (especially when the blockages are not too big) for the
characterization of SINR distribution of a typical receiver, or the coverage probability [29].
Since this assumption facilitates analytical tractability, the follow-up works on mm-wave
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networks, including the prior arts on rate analyses in mm-wave networks [116,119,129], tend
to simply accept the independent blocking as a de facto model for blocking. However, this
assumption may not lead to a meaningful characterization of mm-wave association cells and
hence the load served by different BSs. For instance, by ignoring this correlation, two ad-
joining points in space may be assigned to the cells of two different BSs, thus resulting in
association cells that deviate significantly from reality. Therefore, for the association cells,
we need to jointly consider the blocking statistics for adjacent points which is likely to have
some spatial correlation. While this spatial correlation can be introduced by considering
some spatial distribution of blockages [114], it induces tremendous complexity in comput-
ing the link state between any transmitter and receiver (line-of-sight (LOS) or non-LOS
(NLOS)) and is neglected in all analytical and even most of the 3GPP simulation mod-
els [143]. Therefore, a tractable and reasonably accurate approach to rate analysis needs to
revisit such assumptions for different components of the analysis, while making sure that
the resulting constructs remain physically meaningful. Constructing such an approach is the
main focus of this chapter.

8.1.2 Contributions
Tractable model for IAB-enabled mm-wave HetNet. A tractable and realistic model
is developed for the study of the rate performances in IAB-enabled HetNet operating in mm-
wave. We assume that only the MBSs are provided with fiber backhaul and the SBSs are
wirelessly backhauled by the MBSs over mm-wave links. For this IAB setting, we derive
the rate coverage, or equivalently, the CCDF of the downlink data rate perceived by a
user equipment (UE) for two resource partition strategies at the MBS: (a) IRA: where the
total BW is dynamically split between access and backhaul, and (b) ORA: where a static
partition is defined for the access and backhaul communications. Since this chapter deals
with the rate analysis, we start with a germ-grain model of blockages and apply the well-
accepted assumption of independent exponential blocking for deriving the SINR distributions.
Under this assumption, we are able to characterize the joint distribution of the SINRs of the
access and backhaul link when the typical UE associates to the SBS. We then leverage the
property of the stationarity of the BS, UE and the blockage distributions to characterize
the association cells. In particular, the association cells in our two-tier HetNet model are
stationary partitions which enable the characterization of their mean areas. Using these
results, we then characterize the loads served by the BSs of two tiers for IRA and ORA,
which lead to tractable expressions of rate coverage for the two strategies.

System design insights. Using this model, we obtain the following insights.

(i) As expected, the BW split between access and backhaul links has a significant impact
on the performance of ORA. Our numerical results indicate that there exists an optimum
BW split for which the rate coverage is maximized. As SBS density increases, the optimal
split claims more BW to be dedicated to the backhaul links.
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(ii) The two-tier IAB network performs better than the single-tier macro-only network
but significantly worse than a two-tier network with fiber-backhauled SBSs. Moreover, of-
floading users from MBSs to SBSs does not yield significant rate improvement as observed
in a two-tier HetNet with fiber-backhauled SBSs. This is because the UEs offloaded to
SBSs are actually coming back to the MBS through the increased backhaul load due to
self-backhauling.

(iii) While the rate coverages and median rates improve steadily with SBS density for a
two-tier HetNet with fiber-backhauled SBSs, these metrics quickly saturate with increasing
SBS density for an IAB setting because of the capacity bottleneck of the wireless backhaul
links. This result indicates that the capacity gains of HetNets are significantly overestimated
if no constraint on the SBS backhaul is considered.

8.2 System model

In this Section, we describe the two-tier HetNet setup and define the rate coverage
probability.

8.2.1 BS and user locations

We consider a two-tier HetNet where the MBSs and SBSs are distributed in R2 according
to independent homogeneous PPPs Φm and Φs with densities λm and λs, respectively. All
BSs are assumed to operate in mm-wave regime. The UEs are assumed to be distributed
according to a homogeneous PPP Φu with intensity λu.

The analysis is done for a typical UE which is sampled from Φu uniformly at random.
We shift the origin of our coordinate system to the location of the typical user. The BS that
serves this user is known as the tagged BS. We assume that the MBSs are equipped with
high capacity wired backhaul, i.e., they are connected to the network core by high speed
fibers. On the other hand, the SBSs are wirelessly backhauled by the MBSs over mm-wave
links. All BSs operate in open access, i.e., a UE may either connect to an MBS or an SBS
depending on the max power-based association strategy (details in Section 8.2.3). Thus the
UEs are served by one-hop links if they are connected to the MBS and two-hop links if they
are connected to the SBS. We refer to the link between a user and BS as an access link and
to the link between an MBS and SBS as a backhaul link.

Notation. We will denote a point process and its associated counting measure by the
same notation. Thus, if Φ denotes a point process, then Φ(A) denotes the number of points
of Φ falling in A ∈ B(R2), where B(R2) denotes the Borel-σ algebra in R2. Also | · | denotes
the Lebesgue measure in R2 (i.e., for a set B ⊆ R2, |B| denotes the area of B).
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8.2.2 Propagation model
Blockage model

Since mm-wave signals are sensitive to physical blockages such as buildings and trees,
the LOS and NLOS pathloss characteristics of mm-wave signals are significantly different.
Since blockage models are highly context specific, both deterministic [143] and stochastic
models [114, 144, 145] have been used in the literature. Similar to [144, 145], we will use
a well-known stochastic model known as the germ-grain model for modeling blockages. In
particular, the blockages are assumed to be a sequence of line segments Φbl = {p, Lbl, θ}
where p, Lbl, and θ denote the location of midpoint, length, and orientation of each segment,
respectively. The sequence {p} is distributed as a PPP density λbl in R2 and {θ} is a sequence
of independently and identically distributed (i.i.d.) uniform random variables in (0, 2π]. A
link between a transmitter at x and a receiver at y is in LOS (s(x,y) = `) if there is no
intersection between the line segment connecting x and y, denoted as x,y, and the elements
in Φbl. We denote the state of a link as s ∈ {`, n} in accordance with the link being in LOS
or NLOS state. For a link of type k, the pathloss is defined as

Lki(z) =

{
zαki,` , if s = `, i.e. #(Φbl ∩ x,y) = 0,

zαki,n , if s = n, i.e. #(Φbl ∩ x,y) > 0,
k ∈ {a, b}, i = {m, s}, (8.1)

where {αki,s} denote the pathloss exponents and #(Φbl ∩ x,y) gives the number of line
segments from Φbl that intersect with x,y. In Fig. 8.1, we illustrate a realization of the
network. In addition to its relevance from the systems perspective (as justified in [145]),
there are two reasons for choosing this particular blocking distribution. First, it reduces to
the well-known independent exponential blocking if Lbl is not large enough [145], which will
be useful for the SINR analysis in Section 8.3.1. Second, it is a stationary distribution which
will facilitate the characterization of cell load in Section 8.3.2.

Effective antenna gain

The propagation loss in mm-wave frequencies can be overcome by beamformed direc-
tional transmission. To this end, all mm-wave BSs and UEs are assumed to be equipped
with antenna arrays. For the analytical tractability, the BS antenna gains are approximated
with sectorized gain patterns, in which the array gains are assumed to be Gi for all the
angles within the main lobe of beam width θbi and another smaller constant gi for the rest
of the angles (i ∈ {m, s}). The configuration of UE antenna patterns are also assumed to
be sectorized with gains Gu and gu in the main and side lobes, respectively and beamwidth
θu

1. Hence, if ψki denotes the effective antenna gain for a link of type k between a BS in
Φi and a reference point (a UE for k = a and SBS for k = b), then under perfect beam

1 For notational simplicity, we are assuming that the antenna units for access and backhaul communications
at the SBS and MBS have similar gain patterns. However, different antenna patterns for access and backhaul
communications can be easily incorporated without any significant change in the analysis.
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Figure 8.1: A realization of the two-tier network. The blockages are indicated by red lines.

(a) Association to SBS.

(b) Association cells to SBS.

Figure 8.2: Illustration of x∗ and x̃.
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alignment between the transmit and receive antennas, ψai = GiGu and ψbi = GiGs. We
assume that the BSs are transmitting at constant power spectral density Pi/W (i ∈ {m, s})
over the system BW W . Hence, the received power over a bandwidth W ′ in the downlink at
a reference point located at y from a BS at x ∈ Φi is given by

P(x,y) =
Pi
W
W ′hx,yβkiψkiLki(‖x− y‖)−1, i ∈ {m, s}, (8.2)

where k ∈ {a, b} refer to the access and backhaul links, respectively, and βki is the propa-
gation loss at a reference distance (1 m). We assume each link undergoes Rayleigh fading,
i.e., {hx,y} is a sequence of i.i.d. random variables with hx,y ∼ exp(1). Note that while
one can, in principle, include more general fading distributions, such as Nakagami [29], the
additional complexity of the analytical expressions will significantly outweigh any additional
design insights. This is primarily because the performance trends are somewhat robust to
the choice of fading distribution as long as the distance-dependent channel components are
included. The well-known tractability of Rayleigh distribution has therefore led to its use in
the analysis of mm-wave systems as well [119,129].

8.2.3 Association policy
The typical UE connects to the BS at x∗ providing maximum biased average received

power,
x∗ = arg max

x∈Φi
i∈{s,m}

PiTiβaiGiGuLai(‖x‖)−1, (8.3)

where Ti denotes the bias factor for association to the ith BS-tier [24]. As it will be demon-
strated in the sequel, bias factors play pivotal role to offload users (traffic) from one tier to
another [24]. If the serving BS is an SBS, i.e. x∗ ∈ Φs, then this SBS is wirelessly backhauled
to an MBS in Φm offering maximum power at the serving SBS location. We call this MBS
the anchor MBS of the serving SBS. Thus, if x̃ is the location of the anchor MBS of the SBS
at x∗, then,

x̃ = arg max
x∈Φm

PmβbmGmGsLbm(‖x− x∗‖)−1. (8.4)

Fig. 8.2 gives an illustration of x∗ and x̃. Following the association policy, this typical access
link will be associated to either an MBS or an SBS with an association probability which is
formally defined as follows.

Definition 8.1 (Association Probability). The association probability Ai is defined as the
probability of the following association event: Ai = P (x∗ ∈ Φi), ∀ i ∈ {m, s}.

Since the spatial distribution of the network is stationary, Ai denotes the fraction of
users of Φu being served by the BSs of Φi [24]. We now define the association cells as follows.

Definition 8.2 (Association Cell). The association cell of a BS located at x refers to a
closed subset in R2 where the received power from x is greater than the received powers
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(a) Association cells for RAN (b) Association cells for backhaul network

Figure 8.3: Association cells formed by the BSs of the two-tier HetNet under correlated
blocking. Circles represent the MBSs, and triangles represent the SBSs.

from all other BSs in the network. For the access links, an association cell of the ith tier can
be expressed as

Cai(x) = {z ∈ R2 : PiTiβaiGiLai(‖z− x‖)−1 ≥ PjTjβajGjLaj(‖z− y‖)−1,

∀ y ∈ Φj, j ∈ {m, s}|x ∈ Φi}, (8.5)

and for backhaul links,

Cb(x) = {z ∈ R2 : Lbm(‖z− x‖)−1 ≥ Lbm(‖z− y‖)−1,∀ y ∈ Φm|x ∈ Φm}. (8.6)

These association cells are depicted in Fig. 8.3.

8.2.4 Interference modeling
We now elaborate on the aggregate interference Iaj from Φj (j ∈ {m, s}) experienced

by the typical access link, which can be written as

Iaj =
∑

x∈Φj\{x∗}

Pj
W
W ′h0,xβajψajLaj(‖x‖)−1, (8.7)

where ψaj denotes the effective antenna gain of an interfering link seen by the typical
UE. Similar to [114, 115, 129], we model beam directions of the interfering BSs as uni-
form random variables in (0, 2π]. Then, {ψaj} becomes a sequence of i.i.d. discrete ran-
dom variables taking values from the set Maj = {GjGu, Gjgu, gjGu, gjgu} with probabili-
ties { θbj θbu

4π2 ,
(2π−θbj )θbu

4π2 ,
θbj (2π−θbu )

4π2 ,
(2π−θbj )(2π−θbu )

4π2 }, respectively, where j ∈ {m, s}. In general,
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Figure 8.4: Resource partition strategies for a toy example: MBS with two SBSs and four
macro users (MUEs), SBS 1 has two users (denoted as SUEs) and SBS 2 has three users.

we will denote G ∈ Maj as an element occurring with probability pG.We now shift our
attention to the interference experienced by the tagged backhaul link. Similar to the ac-
cess links, ψbj can be modeled as a discrete random variable taking values from the set
Mbj

= {GjGs, gjGs, Gjgs, gjgs} with probabilities

{θbjθbs
4π2

,
(2π − θbj)θbs

4π2
,
θbj(2π − θbs)

4π2
,
(2π − θbj)(2π − θbs)

4π2
}

, respectively, where j ∈ {m, s}. Using this, the interference experienced by the tagged
backhaul link from all BSs in Φj conditioned on x∗ ∈ Φs can be expressed as

Ibj =





∑
x∈Φm\{x̃}

Pm

W
W ′hx∗,xβbmψbm Lbm(‖x− x∗‖)−1, j = m,

∑
x∈Φs\{x∗}

Ps

W
W ′hx∗,xβbsψbs Lbs(‖x− x∗‖)−1, j = s.

(8.8)

We also assume that all BSs are active in the downlink (full buffer assumption). This means
that there is at least one user in an access association cell and one SBS in a backhaul
association cell. This assumption is justified since λm << λs << λu.

8.2.5 Resource allocation and data rate
In this Section, we introduce two resource allocation strategies.

Integrated resource allocation (IRA)

We assume that the access and backhaul links share the same pool of radio resources
through orthogonal resource allocation (such as time and frequency division multiple access)
and at any BS the total pool of available resources is equally divided among the number
of UEs served by each BS (i.e. the BS load) by a simple round robin scheduling. By this
resource allocation scheme, if the typical UE connects to the MBS (x∗ ∈ Φm), the resource
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fraction allocated for the typical UE by the tagged MBS is the inverse of the total load on
the tagged MBS which is (Φu(Cam(x∗)) +

∑
x∈Φs∩Cb(x∗) Φu(Cas(x))). Here the first term is the

load due to the users connected to the tagged MBS over access links and the second terms is
due to the users connected to the tagged MBS via SBSs (two hop links). If the typical UE
connects to the SBS (x∗ ∈ Φs), the fraction of total resources allocated for the tagged SBS
for backhaul by the anchor MBS is

ω =
Φu(Cas(x

∗))

Φu(Cam(x̃)) +
∑

x∈Φs∩Cb(x̃)

Φu(Cas(x))
. (8.9)

At the tagged SBS, the resources not occupied by the backhaul link can be further split
equally between the access links of the associated UEs. Thus the rate of a UE is given by

RateIRA =





W
Φu(Cam (x∗))+

∑
x∈Φs∩Cb(x∗)

Φu(Cas (x))
log (1 + SINRa(0)) , if x∗ ∈ Φm,

W
Φu(Cas (x∗))

min (ω log (1 + SINRb(x∗)) , (1− ω) log (1 + SINRa(0))) , if x∗ ∈ Φs.

(8.10)

Here the SINR on the access link experienced by the typical UE conditioned on the fact that
it connects to a BS of Φi (i.e. x∗ ∈ Φi) is expressed as

SINRa(0) =
PiGiGuβaih0,x∗Lai(‖x∗‖)−1

∑
j∈{s,m}

∑
x∈Φj\{x∗}

Pjh0,xβajψajLaj(‖x‖)−1 + N0W
, (8.11)

and the SINR on the backhaul link experienced by the serving SBS conditioned on x∗ ∈ Φs

is expressed as

SINRb(x∗) =
PmGmGsβbmhx∗,x̃Lbm(‖x∗ − x̃‖)−1

∑
j∈{m,s}

∑
x∈Φj\{x̃}

Pjhx∗,xβbjψbjLbj(‖x− x∗‖)−1 + N0W
. (8.12)

Orthogonal resource allocation (ORA)

In the ORA scheme, we assume that a fraction ηa of resources is reserved for access
links and the rest is allocated to the backhaul links. The share of the total backhaul BW
(1 − ηa)W obtained by an SBS at x is proportional to its load (Φs(Cas(x))). Then the rate
of a UE is given by

RateORA =





ηaW
Φu(Cam (x∗))

log (1 + SINRa(0)) , if x∗ ∈ Φm,

min

(
ηaW

Φu(Cas (x∗))
log (1 + SINRa(0)) , (1−ηa)W∑

x∈Cb(x̃)

Φu(Cas (x))
log (1 + SINRb(x∗))

)
,

if x∗ ∈ Φs,

(8.13)
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where SINRa(0) is given by (8.11) and SINRb(x∗) is given by

SINRb(x∗) =
PmGmGshx∗,x̃βbmLbm(‖x∗ − x̃‖)−1

∑
x∈Φm\{x̃}

Pmhx∗,xβbmψbm Lbm(‖x− x∗‖)−1 + N0W
. (8.14)

Note that SINRb(x∗) for ORA is greater than SINRb(x∗) for IRA, since in ORA, the tagged
backhaul link operating in backhaul BW will not experience the interference from SBSs op-
erating in access BW. However, it will be shown in the sequel that this interference difference
does not affect the rate since the backhaul links are mostly noise limited. Under the full
buffer assumption, SINRa(0)-s for IRA and ORA are the same. We define the rate cover-
age probability (or simply rate coverage) as the complementary cumulative density function
(CCDF) of rate, i.e., Pr = P(Rate > ρ), where ρ is the target rate threshold. The two
resource allocation strategies are illustrated in Fig. 8.4.

8.2.6 Two-tier HetNet with fiber-backhauled SBSs
To compare and contrast the rate characteristics of the two-tier HetNet with IAB, we

define another two-tier network where the SBSs have access to fiber backhaul similar to the
MBSs. This setup is also known as HetNets with ideal SBS backhaul and has been thoroughly
analyzed in the literature [115, 119]. The user perceived rate in this setup can be expressed
as:

RateWb =

{
W

Φu(Cm(x∗))
log (1 + SINRa(0)) , if x∗ ∈ Φm,

W
Φu(Cs(x∗)) log (1 + SINRa(0)) , if x∗ ∈ Φs,

. (8.15)

Clearly it can be seen that RateWb stochastically dominates RateIRA and RateORA, i.e.,
P(RateWb > ρ) ≥ P(Rateε > ρ) for ε ∈ {IRA,ORA}.

8.3 Rate distribution
In this Section, we evaluate the rate coverage probability defined in the previous Section.

Note that the random variables appearing in the Rate expressions are of two main types,
SINRs of the access and backhaul links and loads on different BSs. While these SINR and
load variables are correlated due to the same underlying point processes, this correlation is
typically ignored for analytical tractability in this stationary setup without incurring any
significant loss in accuray [57,128,129,141].

8.3.1 SINR distributions
In this Section, we are going to evaluate the following CDFs: (i)MBS coverage: P(SINRa(0) >

τ |x ∈ Φm), and (ii) joint SBS and backhaul coverage: P(SINRa(0) > τ1, SINRb(x∗) > τ2|x ∈
Φs). As noted earlier, the germ-grain model for blockages introduced in Section 8.2 is not
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conductive for the SINR analysis [114]. However, if Lbl is not large enough, we can character-
ize the SINR distributions by assuming the independent blocking model [145] which is stated
as follows.

Assumption 2. Each link state is assumed to be in LOS independently with probability
p(r) = exp(−r/µ), where r > 0 is the link distance and µ is the LOS range constant.

As evident in the sequel, the independent exponential blocking model closely approxi-
mates the germ-grain model of blocking in terms of the SINR distributions. The connection
between Φbl and µ will be established in Remark 8.7. In addition, recall that the germ-grain
model will provide the underlying correlation necessary to construct meaningful association
cells for load and rate analysis in Section 8.3.2. For preserving the simplicity of analysis, we
now make another reasonable assumption on the SINR.

Assumption 3. (a) For the typical access link, interference from the MBSs is neglected,
i.e.,

SINRa(0) =
PiGiGuβai

h0,x∗Lai(‖x∗‖)−1

∑
x∈Φs\{x∗}

Psh0,xβasψasLas(‖x‖)−1 + N0W
, (8.16)

and (b) the tagged backhaul link is assumed to be noise-limited, i.e.,

SINRb = SNRb = SINRb(x∗) =
PmGmGsβbmhx∗,x̃Lbm(‖x∗ − x̃‖)−1

N0W
. (8.17)

The intuition behind the above simplification is as follows. The SBSs, equipped with
large antenna arrays, are able to beamform towards the direction of the ABS antenna to
establish the backhaul link. On the other hand, the UEs, with lower beamforming capabilities
compared to the BSs, are likely to experience SBS interference due to the dense deployments
alongside thermal noise. As will be clear in the sequel, this reasonable assumption allows
us to compute the joint distribution of SINRa(0) and SINRb(x∗), which is currently an open
problem in the literature.

As a first step towards the coverage and rate analyses, we define the pathloss point
process on similar lines of [113,115,129]. However note that due to the exponential blocking
model considered in this chapter, the properties of this process are different than those of
the LOS-ball model used in the prior arts (see [29, Section III-C] for details on the LOS-ball
model).

Definition 8.3 (Pathloss process). We define the sequence {Lki = Lki(‖x‖) : x ∈ Φi} as a
pathloss process associated with Φi (i ∈ {m, s}) where the reference point at the origin is
the typical UE for k = a (corresponding to the typical access link) and typical SBS for k = b
(corresponding to the typical backhaul link).
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Lemma 8.4. The pathloss process Lki (k ∈ {a, b}, i ∈ {m, s}) is a PPP in R+ with intensity
measure: Λki([0, l)) =

2πλi

[
µ

(
µ − e−

l

1
αki,`

µ

(
l

1
αki,` + µ

))
+
l

2
αki,n

2
− µ

(
µ − e−

l

1
αki,n

µ

(
l

1
αki,n + µ

))]
, (8.18)

and density:

λki(l) = 2πλi

(
1

αki,`
l

2
αki,`

−1
e−

l
µ +

1

αki,n
l

2
αki,n

−1 (
1− e− l

µ

))
, for l > 0. (8.19)

Proof. Since the link state (i.e. LOS or NLOS) can be considered as independent mark on
each BS in Φi, the LOS and NLOS BSs with respect to the typical UE (typical SBS) are
inhomogeneous PPPs with densities λie−‖x‖/µ and λi(1 − e−‖x‖/µ), respectively [17]. These
PPPs under mapping Lki(‖x‖) are PPPs in R+. Superposition of these PPPs gives us Lki ,
which is again a PPP with intensity measure:

Λki([0, l)) = 2πλi

∞∫

0

P(Lki(r) < l)rdr = 2πλi

∞∫

0

(
e−

r
µ1(rαki,` < l) +

(
1− e− rµ

)
×

1(rαki,n < l)

)
rdr = 2πλi

l

1
αki,`∫

0

e−
r
µ rdr + 2πλi

l

1
αki,n∫

0

(
1− e− rµ

)
rdr.

The final expression in (8.18) follows from algebraic simplifications. Differentiating with
respect to l using Leibniz integral rule, we obtain the density function in (8.19).

In the following Corollary, we provide the expressions of the intensity measures and
densities of the PPPs formed by the LOS and NLOS BSs of Φs with respect to the typical
UE, to be later used for the derivation of the joint SBS and backhaul coverage.

Corollary 8.5. The pathloss processes of the LOS and NLOS links from the BSs in Φs to
the typical UE are PPPs with intensity measures

Λas,`([0, l)) = 2πλsµ

(
µ− e− l

1
αas,`

µ

(
l

1
αas,` + µ

))
, (8.20)

Λas,n([0, l)) = 2πλs

(
l

2
αas,n

2
− µ

(
µ− e− l

1
αas,n

µ

(
l

1
αas,n + µ

)))
, (8.21)

and density functions

λas,`(l) =
2πλs

αas,`

l2/αas,`
−1e−

l
µ , λas,n(l) =

2πλs

αas,n

l2/αas,n−1
(

1− e− l
µ

)
, l > 0. (8.22)
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Note that Λas,`((0, l]) + Λas,n((0, l]) = Λas((0, l]) and λas,`(l) + λas,n(l) = λas(l). Since
the user association directly depends on the pathloss (see (8.5)), we are now in a position to
characterize the association probabilities to Φm and Φs for the typical access link defined in
Definition 8.1.
Lemma 8.6. The association probability of the typical access link to a BS of Φi is expressed
as

Ai =

∞∫

0

e
−

∑
j∈{m,s}

Λaj ((0,Ωj,il])

λai(l)dl, (8.23)

where Λaj(·) and λaj(·) are given by (8.18) and (8.19), respectively, and Ωj,i =
PjTjβajGj

PiTiβaiGi
.

Proof. First we denote the location of candidate serving BS of Φi as

x̄i = arg max
x∈Φi

PiTiβaiGiGuLai(‖x‖)−1 = arg min
x∈Φi

Lai(x).

The CDF of L̄ai := Lai(x̄i) can be obtained from the CDF of the contact distance of Lai

as P(L̄ai ≤ l) = 1 − e−Λai ((0,l]). Differentiating with respect to l, we obtain the PDF of
L̄ai as: fL̄ai

(l) = e−Λai ((0,l])λai(l), l > 0. Now, Ai = P(x∗ ∈ Φi) = P
(
PiTiβaiGiL̄

−1
ai
≥

PjTjβajGjL̄
−1
aj

)
=P
(
L̄aj ≥ Ωj,iL̄ai

)
= E

[
e−Λaj ((0,Ωj,iL̄ai ])

]
=
∞∫
0

e−Λaj ((0,Ωj,il])fL̄ai
(l)dl. The final

expression is obtained by substituting fL̄ai
(l).

We remind that the results derived in this Section are functions of µ, which appears in
the expression for the blocking probability given in Assumption 2. While characterizing µ for
the germ-grain blockage model of Section 8.2 is known to be hard, we propose one reasonable
way of choosing µ given a particular blockage configuration (λbl, Lbl) in the following remark.
Remark 8.7. We choose µ such that Ai in (8.23) evaluated as a function of µ is equal to
the empirical value of Ai computed as Definition 8.1. Since we have a two-tier network, it
is sufficient to match only one quantity, say, Am (since As = 1−Am) for the calibration of
µ. A simple Matlab script to empirically obtain the value of µ is provided by the authors
at [146].

While one can of course use other ways to calibrate µ with the blockage parameters [29],
the reason of this particular way of calibration will be clarified in the next Section. We now
derive the distribution of pathloss of the serving link, i.e., the link between the typical UE
and its serving BS.
Lemma 8.8. Conditioned on x∗ ∈ Φi, the PDF of L∗a := Lai(‖x∗‖) is given by

fL∗a(l|x∗ ∈ Φi) =
1

Ai
e
−

∑
j∈{m,s}

Λaj ((0,Ωj,il])

λai(l), l > 0, (8.24)

where Λaj(·), λaj(·), and Ai are given by (8.18), (8.19), and (8.23), respectively.
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Proof. The conditional CCDF of L∗a given x∗ ∈ Φi is F̄L∗a(l|x∗ ∈ Φi) =

P
(
L̄ai > l|x∗ ∈ Φi

)
=

P
(
L̄ai > l,x∗ ∈ Φi

)

P (x∗ ∈ Φi)
=

1

Ai

∞∫

l

e
−

∑
j∈{m,s}

Λaj ((0,Ωj,il])

λai(l)dl.

The desired PDF can be obtained by differentiating with respect to l.

In Lemmas 8.6-8.8, we derived the association probability and pathloss PDFs of the
serving link for the two-tier HetNet. One can further interpret this network as a three-tier
HetNet by splitting Φs into Φs,` and Φs,n which are the sets of SBSs at LOS and NLOS of the
typical UE, respectively. In the following Corollary, we provide the association probabilities
to Φs,` and Φs,n and the corresponding PDFs of pathloss of the serving link.

Corollary 8.9. The SBS association event can split into two events based on the state of
the link between the typical UE and serving SBS:

As = P(x∗ ∈ Φs, s(x
∗,0) = `)︸ ︷︷ ︸

As`

+P(x∗ ∈ Φs, s(x
∗,0) = n)︸ ︷︷ ︸

Asn

,

where the association probabilities to LOS SBS and NLOS SBS are given by

Ast =

∞∫

0

e
−

∑
j∈{m,s}

Λaj ((0,Ωj,sl])

λas,t(l)dl, t ∈ {`, n},

and the corresponding pathlosses of the serving links are denoted as L∗a|s(x∗,0) = ` and
L∗a|s(x∗,0) = n, respectively whose PDFs are given as

fL∗a(l|x∗ ∈ Φs, s(x
∗,0) = t) =

1

Ast

e
−

∑
j∈{m,s}

Λaj ((0,Ωj,sl])

λas,t(l), l > 0, t ∈ {`, n}, (8.25)

where Λas,`,Λas,n, λas,`, and λas,n are given by Corollary 8.5.

Proof. The SBS PPP can be treated as a superposition of LOS and NLOS SBS PPPs.
Considering these two PPPs instead of Φs, the proof follows on similar lines of Lemmas 8.6
and 8.8 for a three-tier HetNet.

We now characterize the pathloss process of MBSs for the tagged backhaul link which is
not the same as that of the typical backhaul link since it is conditioned on the pathloss of the
typical access link (L∗a) and the fact that x∗ ∈ Φs. Note that this pathloss characterization
is required to derive the joint SBS and backhaul coverage.
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Lemma 8.10. The pathloss process formed by the MBSs perceived by the tagged SBS at x∗
conditioned on the pathloss and state of the typical access link i.e. L∗a, s(x∗,0), the location
of the serving SBS at x∗ ≡ (L∗a

1/αa,s(x∗,0) , θ∗), and the association to SBS (x∗ ∈ Φs), denoted
as Lbm |s(x∗,0),x∗ ∈ Φs,x

∗ ≡ (L∗a
1/αa,s(x∗,0) , θ∗) are PPPs in R+ with intensity measure

Λ̃bt((0, l];L
∗
a, θ
∗) =

∫ 2π

0



∫ l

1/αbm,`

0

λ̃m(r, θ;L∗a
1/αas,t , θ∗)e−r/µr dr

+

∫ l
1/αbm,n

0

λ̃m(r, θ;L∗a
1/αas,t , θ∗)(1− e−r/µ)r dr

)
dθ, for t = s(x∗,0) ∈ {`, n}, (8.26)

and intensity function

λ̃bt(l;L
∗
a, θ
∗) =

∫ 2π

0

λ̃m(l1/αbm,` , θ;L∗a
1/αas,t , θ∗)

1

αbm,`

l
2

αbm,`
−1
e−

l
µ + λ̃m(l1/αbm,n , θ;L∗a

1/αas,t , θ∗)×

1

αbm,n

l
2

αbm,n
−1
(

1− e− l
µ

)
dθ, for t = s(x∗,0) ∈ {`, n}, (8.27)

where
λ̃m(r, θ;x, θ∗) = λ̃′m(r2 + x2 − 2rx cos(θ − θ∗)) 1

2 ,

with

λ̃′m(r) = λme
−r/µ1

(
r > (Ωs,mL

∗
a)

1
αam,`

)
+ λm(1− e−r/µ)1

(
r > (Ωs,mL

∗
a)

1
αam,n

)
.

Proof. The point process Φm|{L∗a,x∗ ∈ Φs, s(x
∗,0) = `} is a PPP in R2 with density:

λ̃′m(r) = λme
−r/µ1

(
r > Ω

1
αam,`
s,m L∗a

1
αam,`

)
+ λm(1− e−r/µ)1

(
r > Ω

1
αam,n
s,m L∗a

1
αam,n

)
.

When this point process is seen from the tagged SBS at x∗ = (L∗a
1

αs,` , θ∗), the density becomes
λ̃m(r, θ;x∗) = λ̃′m((r2 + L∗a

2
αs,` − 2rL∗a

1
αs,` cos(θ − θ∗))

1
2 ). Now the pathloss process on R+

for this conditional version of Φm perceived by the tagged SBS will be a PPP with intensity
function: Λ̃b`((0, l]|x∗) =

∫∞
0

∫ 2π

0
λ̃m(r, θ;x∗)P(Lbm(r) < l)dθ r dr =

∫ ∞

0

∫ 2π

0

λ̃m(r, θ;x∗)

(
e−r/µ1(rαbm,` < l) + (1− e−r/µ)1(rαbm,n < l)

)
dθ r dr.

Differentiating with respect to l, we obtain the intensity function. Similar steps can be
followed when s(x∗,0) = n.

We now obtain the SINR CCDFs required for the rate analysis as follows.
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Lemma 8.11. The MBS and the joint SBS and backhaul coverages under Assumption 3 is
given by

P(SINRa(0) > τ |x∗ ∈ Φm) =
1

Am

∞∫

0

exp


−

∑

G∈Mas

∞∫

Ωs,ml

(
1− 1

1 + τPsβasGl
PmβamGmGuz

)
pGλas(z)dz

− τN0Wl

PmβamGmGu

−
∑

j∈{m,s}

Λaj((0,Ωj,ml])


λam(l)dl, (8.28)

P(SINRa(0) > τ1, SNRb(x∗) > τ2|x∗ ∈ Φs) =
1

As

∑

t∈{l,n}

∞∫

0

∞∫

0

exp


−

∑

G∈Mas

∞∫

l1

(
1− 1

1 + τ1Gl1
GsGuz

)
×

pGλas(z)dz − τ1N0Wl1
PsβasGsGu

− τ2N0Wl2
PmβbmGmGs

− Λ̃bt((0, l2]; l1, 0)−
∑

j∈{m,s}

Λaj((0,Ωj,sl1])




× λ̃bs,t(l2; l1, 0)λas,t(l1) dl2 dl1. (8.29)

Proof. The MBS coverage can be written as P(SINRa(0) > τ |x∗ ∈ Φm) =

P
(
PmβamGmGuh0,x∗Lam(‖x∗‖)−1

Ias + N0W
> τ

∣∣∣∣x∗ ∈ Φm

)
= P

(
h0,x∗ > τ

Ias + N0W

PmβamGmGuL∗a
−1

∣∣∣∣x∗ ∈ Φm

)

= E
[
e
−τ Is+N0W

PmβamGmGuL
∗
a
−1

∣∣∣∣x∗ ∈ Φm

]
= E

[
E
[
e
− τL∗a
PmβamGmGu

Ias

]
e
− τN0WL∗a
PmβamGmGu

∣∣∣∣x∗ ∈ Φm

]
.

The first step follows from Assumption 3-a. In the last step, the expectations inside the
product are conditional expectations given L∗a while the outer expectation is with respect to
L∗a. Now focusing on the first term of the product, which can be also viewed as the Laplace
transform of Ias evaluated at τL∗a

PmβamGmGu
, E
[
e
− τL∗a
PmβamGmGu

Ias
]

=

E
[

exp

(
− τL∗a
PmβamGmGu

∑

z∈Las ,
z>Ωs,mL∗a

Psh0,xβasψasz
−1

)]
(a)
= E

[ ∏

z∈Las ,
z>Ωs,mL∗a

E
[
e
−
τPsh0,xβasψasL

∗
a

PmβamGmGuz

] ∣∣∣∣L∗a
]

= E
[ ∏

z∈Las ,
z>Ωs,mLa

∗

E
[

1

1 + τPsβasψasL
∗
a

PmβamGmGuz

]∣∣∣∣L∗a
]

=
∏

G∈Mas

e
−

∞∫
Ωs,mL

∗
a

(
1− 1

1+
τPsβasGL∗a

PmβamGmGuz

)
pGλas (z) dz

.

Step (a) follows from the assumption that {h0,x} is an i.i.d. sequence of exponential random
variables. The last step follows from the fact that conditioned on La

∗, the pathloss process of
the BSs of Φs with effective antenna gain G is a thinned version of the PPP Las ∩ [0,Λs,mL

∗
a]c

with thinning probability pG [114]. Hence we apply the probability generating functional
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of PPP [17] to compute the product over the point process. The final expression in (8.28)
is obtained by deconditioning over the distribution of L∗a whose PDF is given by (8.24).
Now, the conditional joint SBS and backhaul coverage can be expressed as: P(SINRa(0) >
τ1, SNRb(x∗) > τ2|x∗ ∈ Φs) =

∑

s(x∗)∈{`,n}

P(SINRa(0) > τ1, SNRb(x∗) > τ2|x∗ ∈ Φs, s(x
∗,0))P(s(x∗,0)|x∗ ∈ Φs)

=
∑

s(x∗)∈{`,n}

P(SINRa(0) > τ1, SNRb(x∗) > τ2|x∗,x∗ ∈ Φs, s(x
∗,0))

P(s(x∗,0),x∗ ∈ Φs)

P(x∗ ∈ Φs)
.

The second term under the summation is equal to Ask/As and the first term can be simplified
as: P(SINRa(0) > τ1, SNRb(x∗) > τ2|x∗ ∈ Φs, s(x

∗,0)) =

P

(
PsβasGsGuh0,x∗L

∗
a
−1

Ias + N0W
> τ1,

PmβamGmGshx∗,x̃L̃
−1
b

N0W
> τ2

∣∣∣∣x∗ ∈ Φs, s(x
∗,0)

)

= P

(
h0,x∗ >

τ1(Ias + N0W )L∗a
PsβasGsGu

, hx∗,x̃ >
τ2N0WL̃b

PmβamGmGs

∣∣∣∣x∗ ∈ Φs, s(x
∗,0)

)

= E
[
e
− τ1(Ias+N0W )L∗a

PsβasGsGu E
[
e
− τ2N0WL̃b
PmβamGmGs

∣∣∣∣L∗a, s(x∗,0),x ∈ Φs

] ∣∣∣∣x∗ ∈ Φs, s(x
∗,0)

]
.

The first step follows from Assumption 3-a. Here L̃b = min(Lbm|x ∈ Φs, s(x,0)). Note that
the outer expectation is with respect to L∗a|x∗ ∈ Φs, s(x

∗,0) whose PDF is given by Corol-
lary 8.9. The first exponential term can be handled exactly as the MBS coverage. The inner
expectation is with respect to L̃b|x∗ ∈ Φs, s(x

∗,0), L∗a whose PDF is given by: fL̃b
(l|x∗ ∈

Φs, s(x
∗,0) = t, L∗a) = Eθ∗ [λ̃bt(l;L

∗
a, θ
∗)e−Λ̃bt

((0,l];L∗a,θ
∗)] = λ̃bt(l;L

∗
a, 0)e−Λ̃bt

((0,l];L∗a,0), l > 0,
where λ̃bt(l;L

∗
a, θ
∗) and Λ̃bt((0, l];L

∗
a, θ
∗) are obtained from Lemma 8.10. Note that the ex-

pectation with respect to θ∗ (which is a uniform random variable within (0, 2π]) can be
simplified since it can be shown that the function under the exception is invariant to θ∗.

Note that the summation appearing in the expression of joint SBS and backhaul coverage
in (8.29) is over the link states of the access link between the typical user and the serving
SBS.

Remark 8.12. It is worth mentioning that one of the key contributions of this chapter is
the characterization of the joint SBS and backhaul coverage in mm-wave HetNets. This
is enabled by the exponential path-loss assumption and can facilitate the analysis of joint
coverage in other similar settings such as [147], some of which may yield much simpler forms
for the expression.

However, for our case, since (8.29) contains (8.26) and (8.27) which have integrals over
discontinuous functions that are prone to numerical errors, we simplify the expression of
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joint SBS and backhaul coverage with the following Assumption. As will be evident in the
sequel, this facilitates further analysis without compromising the accuracy of the results and
design insights.

Assumption 4. The joint SBS and backhaul coverage is approximated as the product of
the coverages of a typical access and typical backhaul link:

P(SINRa(0) > τ1, SNRb(x∗) > τ2|x∗ ∈ Φs) = P(SINRa(0) > τ1|x∗ ∈ Φs)P(SNRb(0) > τ2),
(8.30)

where SNRb(0) is the SNR of a typical backhaul link.

The main reason for the expression of (8.29) to be complex is the correlation of SINRa(x∗)
and SNRb(x̃). Since we ignore this correlation in the above assumption, we obtain a simpler
expression for the joint SBS and backhaul coverage in the following Corollary.

Corollary 8.13. Under Assumption 4, the joint SBS and backhaul coverage is given by:

P(SINRa(0) > τ1|x∗ ∈ Φs)P(SNRb(0) > τ2) =
1

As

∞∫

0

exp

(
−
∑

G∈Mas

∞∫

l1

(
1− 1

1 + τ1Gl1
Gsz

)
×

pGλas(z)dz − τ1N0Wl1
PmβamGm

−
∑

j∈{m,s}

Λaj((0,Ωj,sl1])

)
λas(l1) dl1

×
∞∫

0

exp

(
− τ2N0Wl2
PmβbmGmGs

− Λbm((0, l2])

)
λbm(l2) dl2 (8.31)

Proof. The two probability terms appearing in the product can be handled separately. The
first term can be simplified by following the same steps used to derive the MBS coverage.
For the second term, P(SNRb(0) > τ2) =

P
(
PmβamGmGsh0,x̃Lbm(‖x̃‖)−1

N0W
> τ2

)
= P

(
h0,x̃ >

τ2L̃bmN0W

PmβamGmGs

)
= E

[
e
−

τ2L̃bm
N0W

PmβamGmGs

]
,

where x̃ denotes the location of the MBS serving the typical SBS and L̃bm = min(Lbm),
where the PPP Lbm is defined in Definition 8.3. Thus, the PDF of L̃bm is given by fL̃bm

(l) =

λbm(l)e−Λbm ((0,l]), l > 0. The final expression is obtained by deconditioning with respect to

L̃bm . Hence, P(SNRb(0) > τ2) =
∞∫
0

e
− τ2l2N0W
PmβamGmGs λbm(l2)e−Λbm ((0,l2])dl2.

8.3.2 Load distribution
We now focus on the distributions of loads on the serving BS and the anchor MBS which

appeared in the expression of rates in (8.10), (8.13), and (8.15). Note that although we relied
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(a) Association cells for RAN (b) Association cells for backhaul network

Figure 8.5: Association cells formed by the BSs of the two-tier HetNet under independent
blocking. Circles represent the MBSs, and triangles represent the SBSs.

on Assumption 2 for the SINR analysis (for which it is well-accepted and reasonable), it is
not quite meaningful for load analysis where it is imperative to consider spatial correlation
of the link states to make sure that two adjoining points in space are not assigned to two
different association cells. That said, the existing works on the load characterization in a
PPP-network (such as [129]) completely ignore this spatial correlation and simply assume
that the link states seen by any two points are completely independent. This assumption
leads to the association cells (a key component of the load analysis) that have no physi-
cal significance (such as the ones shown in in Figs. 8.5a and 8.5b). On the contrary, the
association cells have much regular shape (see Figs. 8.3a and 8.3b) if we consider spatial
correlation of link states which is induced by the germ-grain model. However, the exact
characterization of the association cells in our current setup is extremely difficult. Note
that for a PPP-modeled HetNet in sub-6 GHz, the association cell areas can be analyzed
under very simple propagation environment with no blockage-effects which reduces to the
formation of weighted Poisson Voronoi (PV) tessellation [24, 128, 141]. While the weighted
PV cells may not appear to be directly applicable to the setting considered in this chapter,
one can discover some useful connections in order to obtain a tractable characterization of
load. The key enabling argument is provided next.

Remark 8.14. Since the spatial distribution of blockages is stationary [145], the association
cells generated by Φm and Φs according to the association rules given by (8.3) and (8.4) are
stationary partition of R2 [141]. Hence it is possible to characterize the mean area of a
typical association cell (denoted by Cai(0) and Cb(0)).

This helps us to formulate the following proposition.
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Proposition 8.15. The mean area of a typical backhaul association cell is E[|Cb(0)|] = 1
λm

and mean area of a typical access association cell is E[|Cai(0)|] = Ai
λi

(i ∈ {m, s}).

Proof. Following Remark 8.14, (8.4) is a stationary association strategy, for which E[|Cb(0)|] =
1
λm

[141]. For the access association cells, a typical cell belongs to Φi with probability
P(0 ∈ Φi) = Ai (according to Definition 8.1). Hence, E[|Cai(0)|] = Ai

λi
.

We now explain the reason of calibrating µ according to Remark 8.7.

Remark 8.16. According to Proposition 8.15, we need Ai to characterize the mean access
association cell areas. While Ai can be evaluated analytically for simpler blockage mod-
els [129], its analytical characterization does not seem straightforward for the germ grain-
model considered in Section 8.2. However, since µ was chosen in a way that always ensures
that Ai obtained by (8.23) is equal to the empirically obtained Ai, we are able to accurately
capture the mean association cell areas into our analysis.

We now compute the load distributions as follows.

Lemma 8.17. Under Proposition 8.15, the PMFs of Φu(Cam(x∗)) and Φu(Cas(x
∗)) are given

as:

P(Φu(Cai(x
∗)) = n) = Kt

(
n;
λi
Ai
, λu

)
,P(Φu(Cam(x̃)) = n) = K

(
n;

λi
Am

, λu

)
, i ∈ {m, s},

(8.32)

where

Kt(n;λ, λu) =
3.53.5

(n− 1)!

Γ(n+ 3.5)

Γ(3.5)

(
λu

λ

)n−1(
3.5 +

λu

λ

)−n−3.5

, n ≥ 1, (8.33)

P(Φs(Cb(x∗)) = n) ≈ P(Φs(Cb(x̃) = n) = K(n;λm, λs), n ≥ 0, (8.34)

and

K(n;λ, λu) =
3.53.5

n!

Γ(n+ 3.5)

Γ(3.5)

(
λu

λ

)n(
3.5 +

λu

λ

)−n−3.5

, n ≥ 0. (8.35)

Note that a random variable following the PMF K(·;λ1, λ2) has mean λ2/λ1.

8.3.3 Rate coverage probability
We are now in position to evaluate the rate coverage.
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Theorem 8.18. Rate coverage for a typical UE in the two-tier HetNet with IAB introduced
in Section 8.2 for a target rate-threshold ρ is expressed as follows.

Pr
IRA(ρ) = Am

∞∑

n=1

P
(
SINRa(0) > 2

ρ
W (n+Asλu

λm
) − 1

)
Kt

(
n;
λm

Am

, λu

)

+As

∞∑

n=1

P
(
SINRa(0) > 2

ρn
W (1+λmn

λu
) − 1

)
P
(
SNRb(0) > 2

ρ(n+ λu
λm )

W − 1

)
Kt

(
n;
λs

As

, λu

)
.

(8.36)

Pr
ORA(ρ) = Am

∞∑

n=1

P
(
SINRa(0) > 2

ρn
ηaW − 1

)
Kt

(
n;
λm

Am

, λu

)

+As

∞∑

n=1

P(SINRa(0) > 2
ρn
Wηa − 1)P(SNRb(0) > 2

ρ(n+Asλu
λm )

W (1−ηa) − 1)Kt

(
n;
λs

As

, λu

)
, (8.37)

where the MBS coverage, joint SBS and backhaul coverage, and Kt(·) are given by (8.28),
(8.31), and (8.33), respectively.

Proof. For IRA, following (8.10), the CCDF of RateIRA is given by

P(RateIRA) = AmP
(

W

Φu(Cam(x∗)) +
∑

x∈Φs∩Cb(x∗)

Φu(Cas(x))
log (1 + SINRa(0)) > ρ

)

+AsP
(

W

Φu(Cas(x
∗))

min (ω log (1 + SINRb(x∗)) , (1− ω) log (1 + SINRa(0))) > ρ

)
. (8.38)

The first term of the summation, i.e., the conditional rate coverage when the typical UE
connects to an MBS can be simplified as

AmP
(
SINRa(0) > 2

ρ
W

(
Φu(Cam (x∗))+

∑
x∈Φas∩Cb(x∗)

Φu(Cas (x))

)
− 1

)
.

The PMF of Φu(Cm(x∗)) is given by Lemma 8.17. The second term can be approximated
as the average number of UEs per SBS (i.e. Asλu/λs) times the number of SBSs falling
in Cb(x∗):

∑
x∈Φs∩Cb(x∗) Φu(Cas(x)) ≈ Asλu

λs
E[Φs(Cb(x∗))] = Asλu

λs
× λs

λm
= Asλu

λm
. The PMF of

Φs(Cb(x∗)) is given by Lemma 8.17. We now focus on the second term in (8.38) which can
be simplified as:

AsP
(
SINRa(0) > 2

ρ
W

Φu(Cas (x∗))

[
1+

Φu(Cas (x∗))
Φu(Cam(x̃))+

∑
x∈Φs∩Cb(x̃)\{x∗} Φu(Cas (x))

]
− 1

)
×
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P
(
SNRb(0) > 2

ρ
W (Φu(Cam (x̃))+Φu(Cas (x∗))+

∑
x∈Φs∩Cb(x̃)\{x∗} Φu(Cas (x))) − 1

)
.

To obtain the final expression, the following approximations on the load variables is applied:∑
x∈Φs∩Cb(x̃)\{x∗}Φu(Cas(x)) ≈ Asλu

λs
E[Φs(Cb(x̃))] = Asλu

λs
× λs

λm
= Asλu

λm
, and Φu(Cam(x̃)) ≈

E[Φu(Cam(x̃))] = Amλu

λm
.

For ORA, following (8.13), PrORA =

AmP
(
SINRa(0) > 2

ρΦu(Cam(x∗))
ηaW − 1

)
+AsP

(
SINRa(0) > 2

ρΦu(Cas (x∗))
ηaW − 1

)

× P
(
SNRb(0) > 2

∑
x∈Cb(x̃)\{x∗} Φu(Cas (x))+Φu(Cas (x))

W (1−ηa) − 1

)
.

From this step, the final expression of rate coverage for ORA can be derived on similar lines
of the derivation for IRA.

We conclude this Section with the rate coverages of a single-tier macro-only network
and a two-tier HetNet with fiber-backhauled SBSs which will be used for comparing the
performances of IRA and ORA in Section 9.5.3. The former can be obtained from (8.36) by
setting λs = 0 and the later can be obtained from (8.15) following the steps outlined in the
proof of Theorem 8.18.

Corollary 8.19. For a single tier macro-only network, Pr is given by:

Pr(ρ) =
∞∑

n=1

P
(
SINRa(0) > 2

ρn
W − 1

)
Kt

(
n;
λm

Am

, λu

)
. (8.39)

For a two-tier HetNet with fiber-backhauled SBSs, Pr is given by:

Pr(ρ) = Am

∞∑

n=1

P
(
SINRa(0) > 2

ρn
W − 1

)
Kt

(
n;
λm

Am

, λu

)

+As

∞∑

n=1

P
(
SINRa(0) > 2

ρn
W − 1

)
Kt

(
n;
λs

As

, λu

)
. (8.40)

8.4 Results and Discussions
8.4.1 Verification of Accuracy

We now verify the accuracy of our analysis by comparing our analytical results with
Monte Carlo simulations of the network defined in Section 8.2. We further emphasize that
the simulation of the network is a “true” simulation in the sense that it accounts for the
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Table 8.1: Key system parameters and default values

Notation Parameter Value
Pm, Ps BS transmit powers 40, 20 dBm

αki,` , αki,n (∀ k ∈ {a, b}, i ∈ {m, s}) Path-loss exponent 3.0, 4.0
βki (∀ k ∈ {a, b}, i ∈ {m, s}) Path loss at 1 m 70 dB

Gm, Gs BS antenna main lobe gain 18 dB
gm, gs BS antenna side lobe gain −2 dB
Gu, gu UE antenna main and side lobe gains 0 dB

µki (∀ k ∈ {a, b}, i ∈ {m, s}) LOS range constant 200 m

N0W Noise power −174 dBm/Hz+ 10 log10W
+10 dB (noise-figure)

{λm, λs, λu} Density of MBS, SBS, and user PPP {10, 50, 1000} km−2

Tm, Ts Bias factors 1,1
λu UE density 1000 km−2

Lbl, λbl Blockage parameters 5 m, 1500 km−2

spatial correlation of blocking while a lot of the existing works (including 3GPP) consider the
independent blocking assumption in simulation. The values of the key system parameters
are listed in Table 8.1. For each simulation, the number of iterations was set to 1 × 103.
The number of iterations is kept low because, as noted in Remark 8.16, the system-level
simulation is extremely time consuming. The primary reason is the computation of every
link state for which it is required to compute the intersection of each link with all the line
segments of Φbl. Following Remark 8.7, we obtain µ = 200 m by matching Am given by
(8.23) with its empirical value obtained by running the simulation scripts provided in [146].
In Fig. 8.6, we plot the MBS and the joint SBS and backhaul coverages. The close match
between theory and simulation validates our assumptions for the coverage analysis. We now
plot Pr for IRA and ORA obtained from simulation and analysis (see Theorem 8.18). For
both strategies, we observe that Pr obtained from our analysis closely follows Pr obtained
from simulation. This further highlights the utility of our analytical expressions of Pr which
are considerably faster to evaluate than its computation by brute-force simulations.

8.4.2 Optimal bandwidth partition for ORA

In Fig. 8.8, we plot the variation of PrORA with ηa for ORA. Note that ηa defines the
BW split for ORA and is hence a crucial system parameter [134]. While it is expected
that PrORA is quite sensitive to the choice of ηa, we observe that there is an optimal access-
backhaul BW split (η∗a) for which Pr

ORA is maximized, i.e., η∗a = arg maxη Pr
ORA(ρ, ηa). We

also find that η∗a decreases with increasing λs which is further evident from Fig. 8.9. This is
because as λs increases, sufficient backhaul BW has to be reserved to support a given target
data rate. Since this reduces the available access BW, it is clear that SBS densification
provides diminishing returns for the overall rate performance of the network. We revisit this
observation in Section 8.4.4.
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Figure 8.6: CCDFs of SINR distributions obtained from Monte Carlo simulation and analysis.
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Figure 8.8: Rate coverage versus bandwidth partition factor for ORA (ρ = 20 Mbps).

8.4.3 User offloading and Rate Coverage
We now offload more traffic to SBSs by increasing Ts (Tm = 1) and plot Pr and the me-

dian rate (ρ50 where Pr(ρ50) = 0.5) for IRA and ORA in Figs. 8.10 and 8.11. For comparison,
we also plot Pr and ρ50 of a two-tier HetNet with fiber-backhauled SBSs (see Corollary 8.19).
We observe that Pr and ρ50 are maximized at certain values of Ts. Also, PrIRA > Pr

ORA

and ρIRA
50 > ρORA

50 , which are expected because of the system design of ORA, i.e. fixed ηa

cannot cope up with the increase in backhaul load due to increasing Ts. What is interesting
is that the improvement in Pr and ρ50 with Ts is much less prominent for IAB than Pr for
the HetNet with fiber-backhauled SBSs. This is because the offloaded UEs from Φm to Φs

are not completely disappearing from the MBS load, i.e., they are coming back to the MBS
load in the form of increased backhaul load. Note that this phenomena is quite unique to
the IAB design and does not occur for the HetNet with fiber-backhauled SBSs. Thus, traffic
offloading in IAB-enabled HetNets is not as effective as in HetNets with fiber-backhauled
SBSs. However, as indicated by Fig. 8.13, the two-tier network with IAB still performs
better than a single-tier macro-only network.

8.4.4 SBS density and Rate coverage
We plot the the variation of Pr with λs in Fig. 8.12. As expected, Pr increases with

λs. However, while Pr steadily increases with λs for the fiber-backhauled SBSs, Pr tends
to saturate for IAB. This effect is more prominent in Fig. 8.13, where we plot ρ50 versus
λs. Figs. 8.12 and 8.13 clearly illustrate the realistic gain of SBS densification in HetNets.
Although the two-tier HetNet is prominently advantageous over a single tier macro-only
network, the assumption of fiber backhaul for all SBSs leads to an overestimation of the rate
improvement of HetNets with increasing λs. Since the overall rate is limited by the rate on
the backhaul link, increasing λs decreases the rate supported by the wireless backhual as the
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BW is shared by more number of SBSs.

8.5 Summary
In this chapter, we proposed a tractable model of an IAB-enabled mm-wave two-tier

HetNet where all MBSs have access to fiber backhaul and the SBSs are wirelessly backhauled
by the MBSs. For this network, we derived the CCDF of downlink end-user data rate
assuming that the total BW at the MBS is split between access and backhaul links by
dynamic or static partitions. While the blockages in mm-wave communication and the two
hop links fromMBS to UE over SBS due to the IAB setup impose analytical challenges for the
exact characterization of the rate distributions, we propose reasonable approximations that
allow us to obtain easy-to-compute expressions of rate coverage. Using these expressions, we
obtain some useful system insights of the multi-tier IAB design such as the impact of traffic
offloading and SBS density on data rate.
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9

Determinantal Subset Selection for
Wireless Networks

9.1 Introduction
ML and SG have recently found many applications in the design and analysis of wire-

less networks. However, since the nature of the problems studied with these tools are so
fundamentally different, it is rare to find a common ground where the strength of these tools
can be jointly leveraged. While the foundation of wireless networks is built on traditional
probabilistic models (such as channel, noise, interference, queuing models), ML is changing
this model-driven approach to a more data-driven simulation-based approach by learning the
models from extensive datasets available from real networks or field trials [148]. On the
other hand, the basic premise of SG is to enhance the model-driven approach by endowing
distributions on the locations of the transmitters (Tx-s) and receivers (Rx-s) so that one can
derive the exact and tractable expressions for key performance metrics such as interference,
coverage, and rate. In this chapter, we concretely demonstrate that these two mathematical
tools can be jointly applied to a class of problems known as the subset selection problems,
which have numerous applications in wireless networks.

9.1.1 Subset selection problems
In wireless networks, a wide class of resource management problems such as power/rate

control, link scheduling, network utility maximization, and beamformer design fall into the
category of subset selection problems where a subset from a ground set needs to be chosen to
optimize a given objective function. For most of the cases, finding the optimal subset is NP-
hard. The common practice in the literature is to design some heuristic algorithms, which
find a local optimum under reasonable complexity. Even most of these heuristic approaches
are NP-complete and are hence difficult to implement when the network size grows large.

In ML, subset selection problems appear in a slightly different context where the primary
objective is to preserve the balance between quality and diversity of the items in the subset,
i.e., to select good quality items from a ground set which are also non-overlapping in terms
of their features. For example, assume that a user is searching the images of New York
in a web-browser. The image search engine will pick a subset of stock images related to
New York from the image library which contains the popular landmarks (quality) as well as
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ensure that one particular landmark does not occur repeatedly the search result (diversity).
Few more examples of subset selection with diversity are text summarization [149], citation
management [150], and sensor placement [151]. The attempt to model diversity among the
items in a subset selection problem brings us to the probabilistic models constructed by
DPPs, which lie at the intersection of ML and SG. Initially formulated as a repulsive point
process in SG [66], DPPs are natural choice for inducing diversity or negative correlation
between the items in a subset. Although the traditional theoretical development of DPPs has
been focused on continuous spaces, the finite version of the DPPs have recently emerged as
useful probabilistic models for the subset selection problems with quality-diversity trade-off
in ML. This is due to the fact that the finite DPPs are amenable to the data-driven learning
and inference framework of ML [150].

9.1.2 Relevant prior art on DPPs
In wireless networks, DPPs have mostly been used in the SG-based modeling and anal-

ysis of cellular networks. In these models, DPPs are used to capture spatial repulsion in the
BS locations, which cannot be modeled using more popular Poisson point process (PPP) [66].
For some specific DPPs, for instance the Ginibre point process, it is possible to analytically
characterize the performance metrics of the network such as the coverage probability [84].
However, the finite DPPs and the associated data-driven learning framework, which is under
rapid development in the ML community has not found any notable application in wireless
networks. The only existing work is [152], where the authors have introduced a new class of
data-driven SG models using DPP and have trained them to mimic the properties of some
hard-core point processes used for wireless network modeling (such as the Matérn type-II
process) in a finite window.

9.1.3 Contributions
The key technical contribution of this chapter is the novel DPPL framework for solving

general subset selection problems in wireless networks.

Application to the link scheduling problem. In order to concretely demonstrate the
proposed DPPL framework, we apply it to solve the link scheduling problem which is a clas-
sical subset selection problem in wireless networks. The objective is to assign optimal binary
power levels to Tx-Rx pairs so as to maximize the sum-rate [153]. The links transmitting at
a higher (lower) power level will be termed active (inactive) links. Therefore, the objective is
to determine the optimal subset of simultaneously active links. Similar to the subset selection
problems in ML, the simultaneously active links will be selected by balancing between the
quality and diversity. The links which will be naturally favored are the ones with better link
quality in terms of signal-to-interference-and-noise-ratio (SINR) so that the rates on these
links contribute more to the sum-rate (quality). On the other hand, the simultaneously ac-
tive links will have some degree of spatial repulsion to avoid mutual interference (diversity).
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With this insight, it is reasonable to treat the set of active links in the optimal solution as a
DPP over the set of links in a given network. The DPP is trained by a sequence of networks
and their optimal subsets which are generated by using an optimization algorithm based
on geometric programming (GP). We observe that the sum-rates of the estimated optimal
subsets generated by the trained DPP closely approach the optimal sum-rates. Moreover,
we show that the subset selection using DPP is significantly more computationally efficient
than the optimization based subset selection methods.

Interference Analysis Assuming that the transmitters are distributed as a DPP, we
analytically characterize the characteristic function of interference at an arbitrary point in
the network. Using this Laplace transform (LT), we then characterize the cumulative density
function (CDF) of interference using the Gil Pelaez inversion formula [97]. Our numerical
results demonstrate that even with the aid of simple formulation of quality and diversity
metrics in the DPPL, the trained DPP yields near-perfect match with the test data in terms
of the interference distribution.

9.2 Determinantal point process: Preliminaries
In this Section, we provide a concise introduction to DPP on finite sets. The interested

readers may refer to [150] for a more pedagogical treatment of the topic as well as exten-
sive surveys of the prior art. In general, DPPs are probabilistic models that quantify the
likelihood of selecting a subset of items as the determinant of a kernel matrix (K). More
formally, if Y = {1, . . . , N} is a discrete set of N items, a DPP is a probability measure on
the power set 2Y which is defined as:

P(A ⊆ Y) = det(KA), (9.1)

where Y ∼ P is a random subset of Y and KA ≡ [Ki,j]i,j∈A denotes the restriction on
K ∈ RN×N to the indices of the elements of A ⊆ Y (K∅ = 1). We denote K as the marginal
kernel which is a positive semidefinite matrix such that K � I (I is an N × N identity
matrix), i.e. all eigenvalues of K are less than or equal to 1. For learning purposes, it is
more useful to define DPP with another formalism known as the L-ensemble. A DPP can
be alternatively defined in terms of a matrix L (L � I) indexed by Y ⊆ Y :

PL(Y ) ≡ PL(Y = Y ) =
det(LY )∑

Y ′∈2Y det(LY ′)
=

det(LY )

det(L+ I)
, (9.2)

where LY = [Li,j]i,j∈Y . The last step follows from the identity
∑

Y ′∈2Y det(LY ′) = det(L+ I)
(see [150, Theorem 2.1] for proof). Following [150, Theorem 2.2], K and L are related by
the following equation:

K = (L+ I)−1L. (9.3)
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(a) g(a1) increases. (b) S1,2 increases.

Figure 9.1: In DPP, the probability of occurrence of a set Y depends on the volume of the
parallelopiped with sides g(ai) and angles proportional to arccos(Si,j): (a) as g(ai) increases,
the volume increases, (b) as Si,j increases, the volume decreases.

Since, L is real and symmetric by definition, its eigendecomposition is L =
∑N

n=1 λnvnv
>
n ,

where {vn} is the orthonormal sequence of eigenvectors corresponding to the eigenvalues
{λn}. Using (9.3), K can also be obtained by rescaling the eigenvalues of L as:

K =
N∑

n=1

λn
1 + λn

vnv
>
n . (9.4)

In the ML formalism, if ai ∈ RN is some vector representation of the ith item of Y , then
L ∈ RN×N can be interpreted as a kernel matrix, i.e., Li,j = k(ai, aj) ≡ φ(ai)

>φ(aj), where
k(·, ·) is a kernel function and φ is the corresponding feature map. The kernel k(ai, aj) can
be further decomposed according to the quality-diversity decomposition [150] as:

Li,j = k(ai, aj) = g(ai)Si,jg(aj), (9.5)

where g(ai) denotes the quality of ai (∀i ∈ Y) and Si,j = Li,j/
√
Li,iLj,j denotes the similarity

of ai and aj (∀i, j ∈ Y , i 6= j). Using (9.5), we can write (9.2) after some manipulation as:
PL(Y = Y ) ∝ det(LY ) = det(SY )

∏
i∈Y

g(ai)
2, where the first term denotes the diversity and

second term denotes the quality of the items in Y . We now provide a geometric interpretation
of PL(Y = Y ) as follows.

Remark 9.1. We can intuitively interpret det(LY ) as the squared volume of the paral-
lelepiped spanned by the vectors {φ(ai)}i∈Y , where ‖φ(ai)‖ = g(ai) and ∠{φ(ai), φ(aj)} =
arccos(Si,j). Thus, items with higher g(ai) are more probable since the corresponding φ(ai)-s
span larger volumes. Also diverse items are more probable than the similar items since more
orthogonal collection of φ(ai)-s span larger volume (see Fig. 9.1 for an illustration). Thus
DPP naturally balances the quality and diversity of items in a subset.
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9.3 The proposed DPPL framework
9.3.1 Conditional DPPs

Most of the learning applications are input-driven. For instance, recalling the image
search example, a user input will be required to show the search results. To model these
input-driven problems, we require conditional DPPs. In this framework, let X be an external
input. Let Y(X) be the collection of all possible candidate subsets given X. The conditional
DPP assigns probability to every possible subset Y ⊆ Y(X) as:

P(Y = Y |X) ∝ det(LY (X)), (9.6)

where LY (X) ∈ (R+)|Y(X)|×|Y(X)| is a positive semidefinite kernel matrix. Following (9.2),
the normalization constant is det(I + L(X)). Now, similar to the decomposition technique
in (9.5),

Li,j(X) = g(ai|X)Si,j(X)g(aj|X), (9.7)
where g(ai|X) denotes the quality measure of link i and Si,j(X) denotes the diversity measure
of the links i and j (i 6= j) given X. In [150], the authors proposed a log-linear model for
the quality measure as follows:

g(ai|X) = exp
(
θ>f(ai|X)

)
, (9.8)

where f assigns m feature values to ai. We will discuss the specifics of f(·|·) in the next

Section. For Si,j(X), we choose the Gaussian kernel: Si,j(X) = e−
‖ai−aj‖

2

σ2 .

9.3.2 Learning DPP model
We now formulate the learning framework of the conditional DPP as follows. We denote

the training set as a sequence of ordered pairs T := (X1, Y1), . . . , (XK , YK), where Xk is the
input and Yk ⊆ Y(Xk) is the output. Then the learning problem is the maximization of the
log-likelihood of T :

(θ∗, σ∗) = arg max
(θ,σ)
L(T ;θ, σ), (9.9)

where L(T ;θ, σ) =

log
K∏

k=1

Pθ,σ(Yk|Xk) =
K∑

k=1

logPθ,σ(Yk|Xk), (9.10)

where Pθ,σ ≡ PL parameterized by θ and σ. The reason for choosing the log-linear model for
quality measure and Gaussian kernel is the fact that under these models, L(T ;θ, σ) becomes
a concave function of θ and σ [150, Proposition 4.2].

9.3.3 Inference
We now estimate Ŷ given X using the trained conditional DPP. This phase is known

as the testing or inference phase. In what follows, we present two methods for choosing Ŷ .
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Sampling from DPP

The first option is to draw random sample from the DPP, i.e., Y ∼ Pθ∗,σ∗(·|X) and set
Ŷ = Y. We now discuss the sampling scheme for a general DPP which naturally extends
to sampling from conditional DPP. We start with drawing a random sample from a special
class of DPP, known as the elementary DPP and will use this method to draw samples from
a general DPP. A DPP on Y is called elementary if every eigenvalue of its marginal kernel

Algorithm 1 Sampling from a DPP
1: procedure SampleDPP(L)
2: Eigen decomposition of L: L =

∑N
n=1 λnvnv

>
n

3: J = ∅
4: for n = 1, . . . , N do
5: J ← J ∪ {n} with probability λn

λn+1

6: V ← {vn}n∈J
7: Y ← ∅
8: B =

[
b1, . . . ,bn

]
← V >

9: for 1 to |V | do
10: select i from Y with probability ∝ ‖bi‖2

11: Y ← Y ∪ {i}
12: bj ← Proj⊥bibjreturn Y

lies in {0, 1}. Thus an elementary DPP can be denoted as PV where V = {v1, . . . ,vk} is
the set of k orthonormal vectors such that KV =

∑
v∈V vv>. We now establish that the

samples drawn according to PV always have fixed size.

Lemma 9.2. If Y ∼ PV , then |Y| = |V | almost surely.

Proof. If |Y | > |V |, PV (Y ⊆ Y) = 0 since rank(KV ) = |V |. Hence |Y| ≤ |V |. Now,
E[|Y|] = E[

∑N
n=1 1(an ∈ Y)] = E

∑N
n=1[1(an ∈ Y)] =

∑N
n=1 Kn,n = trace(K) = |V |.

Our objective is to find a method to draw a k = |V | length sample Y ⊆ Y . Using
Lemma 9.2, PV (Y ) = PV (Y ⊆ Y) = det(KV

Y ). In what follows, we present an iterated
sampling scheme that samples k elements of Y from Y without replacement such that the
joint probability of obtaining Y is det(KV

Y ). Without loss of generality, we assume Y =

{1, 2, . . . , k}. Let B =
[
v>1 , . . . ,v

>
k

]> be the matrix whose rows contain the eigenvectors of
V . Then, KV = BB> and det(KV

Y ) = (Vol({bi}i∈Y ))2, where Vol({bi}i∈Y ) is the volume
of the parallelepiped spanned by the column vectors (bi-s) of B. Now, Vol({bi}i∈Y ) =

‖b1‖Vol({b(1)
i }ki=2), where b(1)

i = Proj⊥b1
bi denotes the projection of {bi} onto the subspace

orthogonal to b1. Proceeding in the same way,

det(KV
Y ) = (Vol({bi}i∈Y ))2 = ‖b1‖2‖b(1)

2 ‖2 . . . ‖b(1,...,k−1)
k ‖2. (9.11)
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Thus, the jth step (j > 1) of the sampling scheme assuming y1 = 1, . . . , yj−1 = j − 1 is to
select yj = j with probability proportional to ‖b(1,...,j−1)

j ‖2 and project {b(1,...,j−1)
i } to the

subspace orthogonal to b
(1,...,j−1)
j . By (9.11), it can be guaranteed that PV (Y ) = det(KV

Y ).

Having derived the sampling scheme for an elementary DPP, we are in a position to
draw samples from a DPP. The sampling scheme is enabled by the fact that a DPP can be
expressed as a mixture of elementary DPPs. The result is formally stated in the following
Lemma.

Lemma 9.3. A DPP with kernel L =
∑N

n=1 λnvnv
>
n is a mixture of elementary DPPs:

PL =
∑

J⊆{1,...,N}

PVJ
∏

n∈J

λn
1 + λn

, (9.12)

where V J = {vn}n∈J .

Proof. Please refer to [150, Lemma 2.6].

Thus, given an eigendecomposition of L, the DPP sampling algorithm can be separated
into two main steps: (i) sample an elementary DPP PVJ with probability proportional to∏

n∈J λn, and (ii) sample a sequence of length |J | from the elementary DPP PVJ . The steps
discussed thus far are summarized in Alg. 1.

MAP inference

A more formal technique is to obtain the maximum a posteriori (MAP) set, i.e.,

Ŷ = arg max
Y⊆Y(X)

Pθ∗,σ∗(Y |X).

But, finding Ŷ is an NP-hard problem because of the exponential order search space Y ⊆ Y(X).
However, one can construct computationally efficient MAP inference algorithm which has
similar complexity as random sampling. Due to space limitations, more formal discussions
of these approximation techniques are outside the scope of the chapter. We refer to [154]
for one possible near-optimal MAP inference scheme for DPPs which will be used in the
numerical simulations.

9.4 Case study: Link scheduling
We will now introduce the link scheduling problem where we will apply the DPPL

discussed in the previous section.
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Figure 9.2: Illustration of link scheduling as a subset selection problem. A realization of
the network (M = 24) with the active link subset (E∗). Details of the network model are
mentioned in Section 9.4.5.

9.4.1 System model
We consider a wireless network with M Tx-Rx pairs with fixed link distance d. The

network can be represented as a directed bipartite graph G := {Nt,Nr, E}, where Nt and
Nr are the independent sets of vertices denoting the set of Tx-s and Rx-s, respectively and
E := {(t, r)} is the set of directed edges where t ∈ Nt and r ∈ Nr. Since each Tx has
its dedicated Rx, the in-degree and out-degree of each node in Nt and Nr are one. Also
|Nt| = |Nr| = |E| = M . An illustration of the network topology is presented in Fig 9.2.
Let KWNt,Nr be the complete weighted bipartite graph on Nt,Nr with W(i, j) = ζij for all
i ∈ Nt, j ∈ Nr. Here ζij denotes the channel gain between Tx i and Rx j.

9.4.2 Problem formulation
We assume that each link can be either in active or inactive state. A link is active when

the Tx transmits at a power level ph and is inactive when the Tx transmits at a power level
p` (with 0 ≤ p` < ph). Each link transmits over the same frequency band whose bandwidth
is assumed to be unity. Then the sum-rate on the lth link is given by log2 (1 + γl), where γl
is the SINR at the lth Rx: γl = ζllpl

σ2+
∑j 6=l
ej∈E

ζjlpj
. Here σ2 is thermal noise power. The sum-rate

maximization problem can be expressed as follows.

maximize
∑

el∈E

log2 (1 + γl) , (9.13a)

subjected to pl ∈ {p`, ph}, (9.13b)

where the variables are {pl}el∈E . An optimal subset of simultaneously active links denoted
as E∗ ⊆ E is the solution of (9.13b). Thus, pl = ph, ∀ el ∈ E∗ and pl = p`, ∀ el ∈ E \ E∗.
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9.4.3 Optimal solution
The optimization problem in (9.13) is NP hard [153]. However, for bipartitle networks

the problem can be solved by a low-complexity heuristic algorithm based on GP (see Alg. 2).
For completeness, we provide the rationale behind its formulation as follows.

Since (9.13) is an integer programming problem, the first step is to solve the relaxed
version of the problem assuming continuous power allocations. In particular, we modify the
integer constraint (9.13b) as 0 ≤ pl ≤ pmax. Since log2(·) is an increasing function, the
problem can be restated as:

min
{pl}el∈E

∏
el∈E

(1 + γl)
−1 (9.14a)

s.t. γl =
ζllpl

σ2 +
∑

j 6=l ζjlpjl
, el ∈ E (9.14b)

0 ≤ pl ≤ pmax ∀ el ∈ E . (9.14c)

Since the objective function is decreasing in γl, we can replace the equality in (9.14b) with
inequality. Using the auxiliary variables vl ≤ 1 + γl, (9.14) can be formulated as:

min
{pl,γl,vl}

∏

el∈E

v−1
l (9.15a)

s.t. vl ≤ 1 + γl, ∀el ∈ E (9.15b)

σ2ζ−1
ll p

−1
l γl +

∑

j 6=l

ζ−1
ll ζjlpjp

−1
l γl ≤ 1, el ∈ E , (9.15c)

0 ≤ plp
−1
max ≤ 1. (9.15d)

Now in (9.15), we observe that (9.15a) is a monomial function, (9.15b) contains posynomial
function in the right hand side (RHS), and all the constraints contain either monomial or
posynomial functions. Hence, (9.15) is a complementary GP [155]. If the posynomial in
(9.15b) can be replaced by a monomial, (9.15) will be a standard GP. Since GPs can be
reformulated as convex optimization problems, they can be solved efficiently irrespective of
the scale of the problem. One way of approximating (9.15) with a GP at a given point
{γl} = {γ̂l} is to replace the posynomial 1 + γl by a monomial klγαll . From 1 + γ̂l = klγ̂

αl
l ,

we get
αl = γ̂l(1 + γ̂l)

−1, kl = γ̂−αll (1 + γ̂l). (9.16)

Also note that 1 + γl ≥ klγ
αl
l , ∀ γl > 0 for kl > 0 and 0 < αl < 1. Thus the local approx-

imation of (9.15) will still satisfy the original constraint (9.15b). The modified inequality
constraint becomes

vl ≤ klγ
αl
l , ∀ el ∈ E , (9.17)

where kl and αl are obtained by (9.16).
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9.4. Case study: Link scheduling

Since (9.15a) is a decreasing function of vl, we can substitute vl with its maximum value
klγ

αl
l , which satisfies the other inequality constraints. Thus, vl can be eliminated as:

∏

el∈E

v−1
l =

∏

el∈E

k−1
l γ−αll = K

∏

el∈E

γ
− γ̂l

1+γ̂ l
l , (9.18)

where K is some constant which does not affect the minimization problem. Thus, the ith
iteration of the heuristic runs as follows. Let γ̂(i)

l be the current guess of SINR values. The
GP will provide a better solution γ̂∗l around the current guess which is set as the initial
guess in the next iteration, i.e., γ̂(i+1)

l = γ∗l unless a termination criterion is satisfied. These
steps are summarized in Alg. 2. To ensure that the GP does not drift away from the initial
guess γ̂(i)

l , a new constraint (9.19b) is added so that γl remains in the local neighborhood
of γ(i)

l . Here β > 1 is the control parameter. The smaller the value of β, the higher is the
accuracy of the monomial approximation, but the slower is the convergence speed. For a
reasonable tradeoff between accuracy and speed, β is set to 1.1. The algorithm terminates
with the quantization step which assigns discrete power levels p` and ph. Once we obtain
the optimal power allocation p∗l ∈ [0, pmax], we quantize it into two quantization levels p`
and ph by setting p∗l = p` whenever its value lies below some threshold level pth or otherwise
p∗l = ph.

For further details on solving the general class of link scheduling problems, the reader is
referred to [153]. Fig. 9.2 demonstrates a realization of the network and E∗ chosen by Alg. 2.

9.4.4 Estimation of optimal subset with DPPL
We will now model the problem of optimal subset selection E∗ ⊆ E with DPPL. We

train the DPP with a sequence of networks and the optimal subsets obtained by Alg. 2.
For the training phase, we set Xk = (KWNt,Nr , E , E∗)k as the kth realization of the net-
work and its optimal subset. The quality and diversity measures are set as: g(ai|X) :=
exp (θ1ζllph + θ2I1 + θ3I2) , where I1 = phζj′i with j′ = arg maxj=1,...,L 6=i{ζji} and I2 = phζj′′i
with j′′ = arg maxj=1,...,L 6=i,j′{ζji} are the two strongest interfering powers, and Si,j(X) =
exp−(‖x(ti)− x(rj)‖2 + ‖x(tj)− x(ri)‖2)/σ2, where x(ti) and x(rj) denote the locations of
Tx ti ∈ Nt and Rx rj ∈ Nr, respectively. The ground set of the DPP Y(X) = E . We denote
the subset estimated by DPPL in the testing phase as Ê∗. The block diagram of the DPPL
is illustrated in Fig. 9.3. In order to ensure the reproducibility of the results, we provide the
Matlab implementation of the DPPL for this case study in [156].

9.4.5 Results and discussions
We now demonstrate the performance of DPPL through numerical simulations. We

construct the network by distributing M links with d = 1 m within a disc of radius 10 m
uniformly at random. We assume channel gain is dominated by the power law path loss,
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Chapter 9. Determinantal Subset Selection for Wireless Networks

Algorithm 2 Optimization algorithm for (9.13)
1: procedure SumRateMax(KWN , E)
2: Initialization: given tolerance ε > 0, set P0 = {pl,0}. Set i = 1. Compute the initial

SINR guess γ̂(i) = {γ(i)
l }.

3: repeat
4: Solve the GP:

minimize K(i)
∏

γ
−

γ̂
(i)
l

1+γ̂
(i)
l

l (9.19a)

subject to β−1γ̂
(i)
l ≤ γl ≤ βγ̂

(i)
l , el ∈ E , (9.19b)

σ2ζ−1
ll p

−1
l γl +

∑

j 6=l

ζ−1
ll ζjlpjp

−1
l γl ≤ 1, el ∈ E , (9.19c)

pl ≤ pmax, ∀ el ∈ E . (9.19d)

with the variables {pl, γl}el∈E . Denote the solution by {p∗l , γ∗l }el∈E .
5: until maxel∈E |γ∗l − γ̂

(i)
l | ≤ ε

6: if pl ≥ pth then
7: pl = ph

8: else
9: pl = p`

return E∗
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Figure 9.3: Block diagram of DPPL for the link scheduling problem.
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9.4. Case study: Link scheduling

i.e., ζij = ‖x(ti) − x(rj)‖−α, where ti ∈ Nt, rj ∈ Nr, and α = 2 is the pathloss exponent.
The network during training and testing phases was generated by setting M ∼ Poisson(M̄)
with M̄ = 20. The instances where M = 0 were discarded. We set ph/σ

2 = pmax/σ
2 = 33

dB, p`/σ2 = 13 dB, and pth = 23 dB. The training set T was constructed by K = 200
independent realizations of the network. Note that changing K from 20 to 200 did not
change the values of σ∗ and θ∗ (σ∗ = 0.266,θ∗ = [996, 675, 593]) significantly. In Fig. 9.4,
we plot the empirical cumulative distribution functions (CDFs) of the sum-rates obtained
by Alg. 2 and DPPL. We observe that the sum-rate obtained by DPPL framework closely
approximates the max-sum-rate. We also notice that DPP MAP inference gives better
sum-rate estimates than DPP sampling. We further compare the performance with the well-
known SG-based model where the simultaneously active links are modeled as independent
thinning of the actual network [152]. In particular, each link is assigned ph according to an
independent and identically distributed (i.i.d.) Bernoulli random variable with probability
ξ. We estimate ξ by averaging the activation of a randomly selected link which is equivalent
to: ξ =

∑K
k=1 1(ei ∈ E∗k )/K for a fixed i. We see that the sum-rate under independent

thinning is significantly lower than the one predicted by DPP. The reason is the fact that
the independent thinning scheme is not rich enough to capture spatial repulsion which exists
across the links of E∗.

Run-time comparison

Another key strength of the proposed DPPL appears when we compare its run-time in
the testing phase and Alg. 2 applied on a network (KWNt,Nr , E). In Fig. 9.5, we plot the run-
times of different subset selection schemes for different network sizes. The absolute values of
run-times were obtained averaging the run-times of all the schemes over 1000 iterations in the
same computation environment. In order to obtain a unit-free measure, we normalize these
absolute values by dividing them with the average absolute run-time of Alg. 2 forM = 5. We
observe that DPPL is at least 105 times faster than Alg. 2. The run-time of Alg. 2 increases
exponentially with M whereas run-times of the DPPL scale as some polynomial order of
M . Note that DPPL is not just a sum-rate estimator of the network, but it estimates
the optimal subset of links Ê∗ significantly faster than the optimization algorithms. Thus,
DPPL can be implemented in real networks to determine E∗ even when the network size is
large. In Fig. 9.6, we plot the sum-rates averaged over 103 network realizations for a given
value of M . Note that evaluating max-sum-rates for higher values of M using Alg. 2 is
nearly impossible due to its exponentially increasing run-time. Quite interestingly, DPPL,
thanks to its fast computation, provides some crisp insights on the network behavior: as more
number of links are added, the estimated max-sum-rate tends to saturate (see Fig. 9.6). This
is expected because as long as the resources are fixed, there will be a limit on the number
of simultaneously active links (irrespective of M) that would maximize the sum-rate. If the
number of active links is more than this limit, sum-rate may decrease because of the increased
interference. Also we observe that the performance difference between MAP-inference and
DPP-sampling increases significantly at higher values of M .
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Figure 9.4: CDF of sum-rate obtained by different subset selection schemes.
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Figure 9.5: Comparison of run-times of Alg. 2 and DPPL in testing phase.
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Figure 9.6: Average rates obtained for different network sizes using DPPL.

9.5 Interference analysis
Having discussed the utility of DPP in learning the spatial distribution of the set of

active Tx-s in a WLAN, we now focus on the analytical tractability of the DPP-based
network model. For this purpose, we characterize the distribution of interference at the
origin assuming that the Tx-s are distributed as a DPP. The kernel of the DPP may be
learned by using the framework proposed in the previous section.

9.5.1 Spatial model
We consider a bipolar setting for WLAN in which a base set of Tx-s are assumed to be

distributed as a homogeneous PPP Φ ⊂ R2 with intensity λ > 0. Each Tx is assumed to
have a dedicated Rx at a fixed distance R in a uniformly random orientation independently
from the rest of the network. Due to the MAC scheme (like the channel access scheme
described in Section 9.4), we assume a subset of these Tx-s are simultaneously active at any
given instance. We denote the set of the simultaneously active Tx-s by Ψ ⊆ Φ. We assume
that conditional distribution of Ψ given Φ follows a DPP. In particular, Ψ is obtained by a
determinantal thinning of Φ. In other words, each realization of Ψ (denoted as ψ ∈ Ψ) is a
DPP over each realization of Φ (denoted as φ ∈ Φ).

9.5.2 Signal model
We denote the small scale fading (power) between a node pair x,y ∈ Ψ as hx,y, where

{hx,y} as the sequence of independently and identically distributed (i.i.d.) random variables
with the characteristic function CFh(s) = E[exp(sh)]. The path-loss associated with a link
with distance r > 0 is given by l(r) = r−α, where α > 2 is the path-loss coefficient. Then
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the interference at a point x can be denoted as:

I(x, ψ) = P
∑

y∈Ψ\{x}

hy,r(y)l(‖y − r(y)‖), (9.20)

where P is the constant transmit power. Because of the stationarity of the network, it is
sufficient to characterize the distribution of interference at the origin, i.e. I(0, ψ) ≡ I. Before
we provide the main result, we will discuss a few useful properties of determiantally thinned
point process which will be instrumental in the derivation of the interference distributions.
Note that Ψ is a doubly stochastic point process and all the expressions evaluated in this
section are conditioned on the realization of the base process: Φ = φ. We now define the
probability generating functional (PGFL) of Ψ.

Definition 9.4 (PGFL). The conditional PGFL of Ψ given Φ is the following:

E

[∏

x∈Ψ

v(x)

]
= E

[
E

[∏

x∈ψ

v(x)

] ∣∣∣∣Φ
]
, (9.21)

where v : R2 7→ [0, 1] is a measurable map.

The PGFL of Ψ is given by the following Lemma.

Lemma 9.5. The conditional PGFL of Ψ given Φ is expressed as:

E

[∏

x∈Ψ

v(x)

]
= E

[
det(I − A(φ)K(φ)A>(φ))

∣∣∣∣Φ = φ

]
, (9.22)

where A(φ) = diag({(1− v(x))
1
2 ,x ∈ φ}).

Proof. See [157] for detailed proof.

We now evaluate the characteristic function of I in the following Lemma.

Lemma 9.6. The conditional characteristic function of I given Φ, denoted as CFI(s|Φ) is
given by the right hand side (RHS) of (9.22) where

v(x) = CFh

(
sP‖x‖−α

)
. (9.23)

Proof. The characteristic function is given as:

E [exp(sI)|Φ] = E

[
exp

(
s
∑

x∈Ψ

Phx,0‖x‖−α
)∣∣∣∣Φ

]
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= E

[∏

x∈Ψ

exp
(
sPhx,0‖x‖−α

)
]

(a)
= E

[∏

x∈Ψ

E
[
exp

(
sPhx,0‖x‖−α

)] ∣∣∣∣Φ
]

= E
[∏

x∈Ψ

CFh(sP‖x‖−α)

∣∣∣∣Φ
]
.

Here step (a) follows from the fact that {hx,y} is an i.i.d. sequence. The final step is

nothing but the PGFL of Ψ evaluated at CFh

(
sP‖x‖−α

)
, which can be computed using

Lemma 9.5.

We now characterize the distributions of I as follows.

Theorem 9.7. The CDF of I is given as:

FI(t) =
1

2
− 1

π
E



∞∫

0

Imag(exp(−itsCFI(s|Φ)))ds


 , (9.24)

where the expectation is taken over Φ.

Proof. The results follow directly by applying Gil-Pelaez inversion formulae [97] on the char-
acteristic function of I.

Remark 9.8. Note that the final expression of the CDF of I is conditioned on Φ which
implies that in order to obtain the final results, the expression needs to be averaged out
over the realizations of Φ. The existence of the results even in the semi-analytical form
demonstrate the synergy between SG and ML in DPPL: while ML handles the fitting of the
DPPL to the samples drawn from a blackbox spatial model with spatial repulsion (which in
our case is the set of locations of the active Tx-s in the WLAN), SG provides analytical handle
to the characterization of key performance metrics of this network (such as the characteristic
function of interference) which can be expressed as some functionals of DPP.

9.5.3 Results and discussions
In this section, we demonstrate the performance of DPPL in estimating the interference

distribution of the WLAN. For the generation of the training set, we chose a Matérn hard core
process (MHCP) with hard core radius 2 m. In future work, we intend to replace the MHCP
with more realistic spatial distributions of the active nodes in a WLAN with carrier sense
multiple access (CSMA). However, since the DPPL is not aware of the actual distribution
of the nodes in the training set, it is sufficient to use MHCP for the training set generation
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Figure 9.7: Contact distance CDF (λ = 5× 10−2 m−2, retention distance 2 m).
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Figure 9.8: CDF of interference (P = 1 mW, α = 4, Rayleigh fading).

to demonstrate the analytical tractability of the proposed framework. The MHCP (type-II)
was generated by thinning a homogeneous PPP with λ = 5 × 10−2 m−2 simulated within
a 70 m × 70 m square window. For the DPPL, we chose the quality function as follows.
For a point x ∈ φ, f(x|φ) =

[
1, d1(x), d2(x)

]>, where di(x) denotes the distance of the ith
nearest neighbor of x in φ. The size of the training set (K) was chosen to be 100 and the
size of the test set was 900. For a sanity check of the learning performance of the DPPL, we
first plot the contact distance distribution (i.e. the CDF of the distance between the origin
and the closest point of the point process to it) of the MHCP computed empirically from
the samples in the test set in Fig. 9.7. For the analytical result, we computed the contact
distance distribution of the DPP with Lθ∗,σ∗ using the semi-analytical expression derived
in [152]. Since contact distance distribution (or equivalently) completely characterizes the
distribution of a point process, a significant match in contact distance demonstrates the
capability of DPP to learn the distribution of an unknown spatial point pattern with spatial
repulsion.

We now provide the CDF of interference in Fig. 9.8. We obtain significant match with
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the actual distribution of the interference in MHCP. It is to be noted that the analytical
characterization of the repulsive point processes is in general difficult and specific to the
distribution under consideration. Thanks to the DPPL, it is now possible to develop a general
analytical framework for these networks after fitting the DPP to the sampling distributions
of the active Tx-s.

9.6 Summary
In this chapter, we identified a general class of subset selection problems in wireless

networks which can be solved by jointly leveraging ML and SG, two fundamentally different
mathematical tools used in communications and networking. To solve these problems, we
developed the DPPL framework, where the DPP orginiates from SG and its learning ap-
plications have been fine-tuned by the ML community. As a case study, we considered the
wireless link scheduling problem where we found that the DPP is able to learn the underlying
quality-diversity tradeoff in the locations of the simultaneously active links. After explor-
ing the learning capability of this framework, we demonstrated its analytical tractability
enabled by the connection of DPP with SG. We derived the semi-analytical expression of
the distribution of interference at the origin from the active Tx-s which are distributed as a
DPP.
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10

Conclusion

In this chapter, we will discuss some key take-aways of this dissertation and a few promising
future works.

10.1 Summary
Over the last decade, stochastic geometry has played a major role in the mathematical

performance analysis of cellular networks. This line of work has been enriched in differ-
ent directions, such as the characterization of coverage and rate of HetNets, analyzing the
performance of MIMO networks, mm-wave and energy-harvesting networks, co-existence of
different networks (e.g. cellular and WiFi), and many more. Despite the plethora of ap-
plications of the stochastic geometry based models, there is one principle assumption of
these models which mostly remains unmodified. This assumption is the complete spatial
randomness of the network topology which means that the BSs and users are distributed
as independent and homogeneous PPPs. This assumption, although yields mathematical
tractability, is becoming outdated with the increasing network complexity. The key aspect
of network topology that cannot be captured in the PPP based model of the network is
the spatial coupling between the users and BSs. Such couplings may not be very crucial in
yesteryear’s cellular network with the coverage-centric deployment of the macrocells. But as
the networks are becoming more and more heterogeneous with one layer of macrocells and
other layers of small cells targetting coverage dead-zones or user hotspots, the spatial cou-
pling between BS and user locations are being too prominent to be considered in the spatial
models of the networks. While the state-of-the-art analytical network models are becoming
outdated, in this dissertation, we developed new stochastic geometry based models for the
cellular networks.

One of the main outcomes of this dissertation is the PCP based model of cellular net-
work. In particular, we have proposed that PCP can be used as an alternative of the homo-
geneous PPP for spatial distribution for the BSs and users in a HetNet. This proposition
enables us to construct a handful of possible spatial models for the HetNet, for instance,
(a) users PCP with SBSs at the cluster center, and (b) users and SBSs both are PCP
sharing the same cluster center. These scenarios essentially capture a wide set of user-BS
couplings which are considered in the 3GPP-compliant network simulators. Moreover, the
HetNet model based on the combination of PPP and PCP generalizes the state-of-the-art
PPP-based network model. In other words, as the cluster size of the PCPs tend to infinity,
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the spatial coupling in the HetNet model disappears and the network converges to the PPP-
based model. Different aspects of the PCP-based general HetNet models have been studied
in Chapters 2-6.

In Chapter 2, we considered a K tier HetNet where the user locations as PCPs with
the SBSs at the cluster centers. For such spatial setup, we derived the downlink coverage
probability. Our results demonstrated that the coverage probability is strongly affected by
the spatial coupling between the user and BS locations: coverage decreases as the size of
user clusters around BSs increases. We also showed that if the cluster size tends to infinity,
the coverage in this setup converges to the coverage obtained under the assumption of PPP
distribution of users independent of the BS locations.

In Chapter 3, we further enriched the PCP-based HetNet model proposed in Chapter 2
by adding another way to model user-BS coupling using PCP. Here we assumed that the
BSs (especially the SBSs) can be also distributed as PCP. The coupling between the user
and BS locations in this scenario can be modeled by setting same parent point process
(set of cluster centers) for the user and BS PCPs. Although we have different choices for
modeling the BS and user distributions by now, we showed that all these configurations can
be unified under a general K-tier HetNet model. We demonstrated that the special cases of
this general HetNet model closely resemble the point patterns of the user and BS locations
used in 3GPP-compliant system-level simulation of HetNets. For this general HetNet model,
we derived the downlink coverage probability assuming that the typical user connects to the
BS providing maximum instantaneous SIR. As a part of the analysis, we characterized the
sum product functional of the PCP under its original and Palm distribution. Our numerical
results reveal the strong connection of coverage with the spatial coupling in the network
topology which was so far ignored in the PPP-based models. For instance, when we consider
user-BS coupling, we have two types of users in the network: Type 1: users whose locations
are independent of the BS locations, and Type 2: users whose locations are coupled with
the BS locations. As example, in our general HetNet model, the users are of Type 1 if
their locations are modeled as homogeneous PPP. If the user locations are modeled as PCP
coupled with the BS locations (PCP), then we call them Type 2 users. Our analysis showed
an interesting trend of coverage for the Type 1 and Type 2 users: as the cluster size of the
BS PCP increases, the coverage of the Type 2 users decreases and the coverage of Type 1
users increases. As the cluster size tends to infinity, the coverage of both the users converges
to the coverage of a typical user in a PPP-based HetNet.

In Chapter 4, we focus on further enhancing the analytical tractability of the general
HetNet model developed in Chapter 3 by considering a more realistic user association rule.
Here we assume that the typical user connects to the BS providing the maximum received
power averaged over fading. This association rule is very similar to the maximum reference
signal received power (RSRP) based association considered in 3GPP-compliant network sim-
ulations. We showed that the coverage probability can be expressed as a product of sum-
product and probability generating functionals (PGFLs) of the parent point processes of the
BS PCPs.
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Chapter 10. Conclusion

In Chapter 5, we characterized the SIR received at the typical user of the general
HetNet model under the max-power based association. The SIR meta distribution, or the
distribution of the conditional success probability (also known as the link reliability) of the
typical user, is considered as a more fine grained coverage analysis of cellular networks with
coverage probability appearing as the first moment of the meta distribution.

In Chapter 6, we focus on another fundamental metric related to the performance
characterization of cellular networks which is the distribution of the load on a BS in a
network. The load characterization in a stochastic geometric setting is a very complicated
problem involving the understanding of the intersection of the user point process and the
random tessellation generated by the BS point processes. The load distribution in a PPP-
based network is quite well-known. The reason the load distribution remains tractable in a
PPP setting is because the moments of the BS load only depends on the volume of the Poisson
Voronoi cell whose distribution is a standard result in stochastic geometry. However, the
problem becomes complicated even with the slightest departure from the PPP assumption
of the BS and user distributions. In fact, load distributions for any non-Poisson network
models have remained open problems in literature. In Chapter 6, we made the first attempt
towards this direction by characterizing the distribution of the typical cell load where the
BSs are distributed as a homogeneous PPP and the users are distributed as an independent
PCP. We also demonstrated the utility of this result by using it to characterize the user rate
for a representative user in the typical cell.

After we studied the PCP-based modeling of the spatial couplings in the network topol-
ogy due to the user-centric deployment of small cells, we shifted our attention to the IAB
networks which is the key architecture associated with the small cell driven network densifi-
cation. While the idea of network densification with low power small cells has been matured
since the 4G era, the actual deployment of the small cells has not picked up as expected
despite the theoretical guarantees of the rate improvement provided by the existing Het-
Net models. One main reason for the disparity in the analysis and reality is the backhaul
network which needs to be scaled equally as the small cells. The existing spatial models
of the HetNets assume no capacity constraints on the backahul links for all the BSs in the
network. While this assumption is reasonable for the macrocells since they are connected
to the network core with high capacity optical fiber, it is questionable for the small cells
since it not possible to reach every SBS with fiber. This problem of the last mile fiber has
been simplified with the possibility of establishing high capacity fiber-like wireless backhaul
links between the MBS and SBS using directional mm-wave transmission. Since the mm-
wave can be also used for the access networks, the access and backhaul networks are further
integrated leading to a new network architecture known as IAB. As expected, the existing
networks need to be redesigned to accommodate this integrated architecture. For instance,
an important question pertaining IAB is how the available resources in at the MBS will be
split between the SBSs served over backhaul and users served over access links. Using the
stochastic geometry based models, we attempted to answer these questions in Chapters 7
and 8. In Chapter 7, we modeled the user hotspots and smallcells within a single macrocell
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of a two tier IAB network. We assumed that the MBS is anchored to the core network and
provides mm-wave backhaul to the SBSs. For this network, we characterized its downlink
rate coverage probability. We studied the performance of three backhaul bandwidth (BW)
partition strategies: 1) equal partition: when all SBSs obtain equal share of the backhaul
BW; 2) instantaneous load-based partition: when the backhaul BW share of an SBS is pro-
portional to its instantaneous load; and 3) average load-based partition: when the backhaul
BW share of an SBS is proportional to its average load. We found that depending on the
choice of the partition strategy, there exists an optimal split of access and backhaul BW for
which the rate coverage is maximized. Further, we showed the existence of a critical volume
of cell-load (total number of users) beyond which the gains provided by the IAB-enabled net-
work disappear and its performance converges to that of the traditional macro-only network
with no SBSs.

In Chapter 8, we considered a multi-cell (more precisely, multiple macrocells) spatial
model of IAB. The main challenge in the rate analysis in the multi-cell setting is the charac-
terization of the access load on SBS and access and backhaul loads on the MBSs which are
highly correlated with each other. As noted earlier, the load analysis in any coupled setting
is highly complicated, we ignored any spatial coupling in the network by resorting to the
baseline PPP-based model. We derived the downlink rate coverage probability for two types
of resource allocations at the MBS: 1) IRA: where the total bandwidth is dynamically split
between access and backhaul, and 2) ORA: where a static partition is defined for the access
and backhaul communications. Our analysis also showed that it is not possible to improve
the user rate in an IAB setting by simply densifying the SBSs due to the bottleneck on the
rate of wireless backhaul links between MBS and SBS.

Finally in Chapter 9, we proposed a new class of machine learning inspired stochas-
tic geometry-based models which are fundamentally different from the modeling approach
followed in the previous chapters. The general approach towards the stochastic geometry
based modeling of wireless networks is to assume some spatial distributions (like PPP or
PCP) of BSs and users. Then the properties of these distributions (e.g. the PGFL or the
sum product functional) are leveraged to derive the analytical expressions of the network
performance metrics (e.g. coverage and rate). The downside of this model-driven approach
is the dependence on the choice of models (in particular, the spatial models) of network.
If the spatial distribution of the network is available in form of data (e.g. a sequence of
locations), the existing approach is not equipped to fit a distribution to the data and still
carry out the analysis. In order to develop the data-driven analytical models of network,
we looked at the intersection of stochastic geometry and machine learning, the two powerful
yet very different tools used for modeling and design of wireless networks. The basis of
the proposed framework is DPP which has been used in machine learning as a model for
subset selection problems and stochastic geometry to model repulsive point patterns. While
subset selection problems occur frequently in any recommendation system, they can be also
identified in wireless networks. One such example is wireless link scheduling, where the goal
is to determine the subset of simultaneously active links which maximizes the network-wide
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sum-rate. We showed that the DPP is able to learn the spatial pattern of the active Tx-s
from a training set generated by running a GP based optimization over the ground set of Tx-
locations. We then demonstrated the analytical tractability of this model by characterizing
the distribution of interference from the active Tx-s at the origin.

10.2 Future works
There are numerous extensions of the works presented in this dissertation. Few of the

prominent directions are listed below.

10.2.1 Extension of the PCP-based network models.
The PCP-based network model developed in Chapters 2-6 has already been extended

in multiple directions, such as mm-wave HetNets [158], IoT networks [159] and unmanned
areal vehicles (UAV) networks [160, 161]. Here we will focus on two relatively less-explored
extensions of this line of work.

Downlink rate analysis. The analytical framework of the PCP-based models developed
in this dissertation has mostly focused on the characterization of downlink coverage proba-
bility or the distribution of the SINR experienced by a user. However, often times we need
to characterize more sophisticated performance metric like the data rate. For instance, we
heavily relied on the downlink rate distributions for the performance characterization of the
backhaul limited networks in Chapters 6-8. As we have already discussed, for the rate char-
acterization of a network, we need the distribution of BS load. However, the BS load is
difficult to analyze for any non-Poisson spatial model. In Chapter 6 and 7, we characterized
the cell load when the user point process had clustering behavior. Except a few special con-
figurations, the load characterization for the general HetNet model is still an open problem.
For instance, let us consider a simple single tier cellular network as follows. Let Φ be the
point process of the BSs which is a PCP with parameters (λp, m̄, f) and Φu be the user point
process, which is either an independent homogeneous PPP (Type 1) or a PCP that shares
the same parent points with Φ (Type 2). For either of the cases, let us consider the random
variables Φu(C0) and Φu(C(0)), where C0 and C(0) denote the zero cell and typical cell of Φ.
When Φ is a PCP, these distributions are not known. The first step towards this direction
will be to understand the volume distributions of the typical and zero cells of PCP which
have not been investigated extensively in the stochastic geometry literature.

Uplink coverage analysis. The second important direction is the analysis of uplink cov-
erage of the PCP-based network model. The main challenge of the uplink analysis is the
characterization of the point process for the interfering users. Let us assume that each BS
schedules one user at a given time-frequency resource block. Then there will be one active
user per in each cell of the BS point process. Following the notations of the single tier network

202



10.2. Future works

introduced above, the set of interfering users (call it Φu(a)) will be a thinned version of Φu

that lie outside the typical cell C0. When Φ is distributed as a PCP, the distribution of Φu(a)

for Type 1 and Type 2 users and henceforth the interference have not been characterized
yet.

10.2.2 Extension of DPPL
The next promising future work is the extension of DPPL that was introduced in Chap-

ter 9. During the time of writing this dissertation, the DPPL framework has been explored
as a proof-of-concept in a couple of scenarios, (1) learning the distribution of the active
transmitters in a wireless link scheduling problem, and (2) learning the distribution of a
MHCP and deriving the semi-analytical expression of interference at the origin. While the
results obtained in both these scenarios are certainly promising, we need to further enhance
the DPPL framework in the following directions.

• Enhancement of the learning objective. Recall that the learning framework proposed
in Section 9.3.2 was to maximize the conditional probability of the occurrence of the
subset (Y ) from the ground set (X). Instead of the original probability measure, one
can use the Palm measure of DPP which will condition that X will always have a point
in the origin [162, Section 5.7.4]. From the analysis point of view, learning the Palm
measure will lead us to more accurate characterization of the metrics like interference
distribution and outage which depend on the Palm distribution of the point process.

• Enhancement of the learning model. The main component of the DPPL was the quality
diversity decomposition given by (9.5). For the quality functions and diversity kernel,
we used simple log-linear model and Gaussian kernel, respectively. While these choices
are inspired from the classical shallow learning, one can use artificial neural networks
as the quality function and diversity kernels following the works like [163] used for
multi-label classification of images.
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